Unified computational approach to nilpotent algebra classification problems
Shirali Kadyrov; Farukh Mashurov
Communications in Mathematics (2021)
- Volume: 29, Issue: 2, page 215-226
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topKadyrov, Shirali, and Mashurov, Farukh. "Unified computational approach to nilpotent algebra classification problems." Communications in Mathematics 29.2 (2021): 215-226. <http://eudml.org/doc/297680>.
@article{Kadyrov2021,
abstract = {In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras.},
author = {Kadyrov, Shirali, Mashurov, Farukh},
journal = {Communications in Mathematics},
keywords = {Algebra; Skjelbred-Sund classification; finite dimensional nilpotent algebra; Wolfram Mathematica; symbolic solver; algorithm},
language = {eng},
number = {2},
pages = {215-226},
publisher = {University of Ostrava},
title = {Unified computational approach to nilpotent algebra classification problems},
url = {http://eudml.org/doc/297680},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Kadyrov, Shirali
AU - Mashurov, Farukh
TI - Unified computational approach to nilpotent algebra classification problems
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 215
EP - 226
AB - In this article, we provide an algorithm with Wolfram Mathematica code that gives a unified computational power in classification of finite dimensional nilpotent algebras using Skjelbred-Sund method. To illustrate the code, we obtain new finite dimensional Moufang algebras.
LA - eng
KW - Algebra; Skjelbred-Sund classification; finite dimensional nilpotent algebra; Wolfram Mathematica; symbolic solver; algorithm
UR - http://eudml.org/doc/297680
ER -
References
top- Abdelwahab, H., Calderón, A.J., Kaygorodov, I., 10.1142/S0218196719500437, International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129, (2019) MR3996987DOI10.1142/S0218196719500437
- Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M., 10.2478/cm-2020-0019, Communications in Mathematics, 28, 2, 2020, 161-178, (2020) DOI10.2478/cm-2020-0019
- Cicalò, S., Graaf, W. De, Schneider, C., 10.1016/j.laa.2011.06.037, Linear Algebra and its Applications, 436, 1, 2012, 163-189, (2012) DOI10.1016/j.laa.2011.06.037
- Calderón, A.J., Ouaridi, A.F., Kaygorodov, I., 10.1080/03081087.2020.1849001, Linear and Multilinear Algebra, 2020, 1-24, DOI: 10.1080/03081087.2020.1849001. (2020) DOI10.1080/03081087.2020.1849001
- Jumaniyozov, D., Kaygorodov, I., Khudoyberdiyev, A., 10.1142/S0219498821502029, Journal of Algebra and its Applications, 2020, DOI: 10.1142/S0219498821502029. (2020) DOI10.1142/S0219498821502029
- Graaf, W. De, 10.1142/S0218196718500078, International Journal of Algebra and Computation, 28, 1, 2018, 133-161, (2018) DOI10.1142/S0218196718500078
- Gorshkov, I., Kaygorodov, I., Khrypchenko, M., The algebraic classification of nilpotent Tortkara algebras, Communications in Algebra, 48, 8, 2020, 3608-3623, (2020)
- Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M., 10.17516/1997-1397-2019-12-2-173-184, Journal of Siberian Federal University. Mathematics & Physics, 12, 2, 2019, 173-184, (2019) DOI10.17516/1997-1397-2019-12-2-173-184
- Goze, M., Remm, E., 2-dimensional algebras, African Journal Of Mathematical Physics, 10, 2, 2011, 81-91, (2011)
- Hegazi, A.S., Abdelwahab, H., 10.1016/j.laa.2016.01.015, Linear Algebra and its Applications, 494, 2016, 165-218, (2016) DOI10.1016/j.laa.2016.01.015
- Hegazi, A.S., Abdelwahab, H., 10.1080/00927872.2017.1327052, Communications in Algebra, 46, 2, 2018, 629-643, (2018) DOI10.1080/00927872.2017.1327052
- Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderón, 10.1016/j.laa.2016.04.029, Linear Algebra and its Applications, 505, 2016, 32-56, (2016) DOI10.1016/j.laa.2016.04.029
- Ismailov, N., Kaygorodov, I., Mashurov, F., 10.1007/s10468-019-09935-y, Algebras and Representation Theory, 24, 2021, 135-148, (2021) DOI10.1007/s10468-019-09935-y
- Kadyrov, S., Mashurov, F., Nilpotent algebra classifier code, 2020, https://www.wolframcloud.com/obj/39e8169f-8fbf-4540-aa65-4b01f187f63f. (2020)
- Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A., 10.1016/j.geomphys.2019.04.016, Journal of Geometry and Physics, 143, 2019, 11-21, (2019) DOI10.1016/j.geomphys.2019.04.016
- Kaygorodov, I., Páez-Guillán, M.P., Voronin, V., The algebraic and geometric classification of nilpotent bicommutative algebras, Algebras and Representation Theory , 23, 2020, 2331-2347, (2020)
- Kaygorodov, I., Volkov, Yu., 10.4153/S0008414X18000056, Canadian Journal of Mathematics , 71, 4, 2019, 819-842, (2019) DOI10.4153/S0008414X18000056
- Loginov, E. K., 10.1007/BF01209084, Mathematical Notes , 54, 6, 1993, 1230-1235, (1993) DOI10.1007/BF01209084
- Mashurov, F., Kaygorodov, I., 10.1142/S0219498822500311, Journal of Algebra and Its Applications, 2020, DOI: 10.1142/S0219498822500311. (2020) DOI10.1142/S0219498822500311
- Shestakov, I., Pérez-Izquierdo, J.M., 10.1016/S0021-8693(03)00389-2, Journal of Algebra, 272, 1, 2004, 379-393, (2004) DOI10.1016/S0021-8693(03)00389-2
- Skjelbred, T., Sund, T., On the classification of nilpotent Lie algebras, Preprint series. Pure Mathematics, 1977, http://urn.nb.no/URN:NBN:no-48289. (1977)
- Zinbiel, G.W., Encyclopedia of types of algebras 2010, Proceedings of the International Conference in Nankai Series in Pure Applied Mathematics and Theoretical Physics, 9, 2012, 217298, (2012)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.