Some properties of state filters in state residuated lattices

Michiro Kondo

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 375-395
  • ISSN: 0862-7959

Abstract

top
We consider properties of state filters of state residuated lattices and prove that for every state filter F of a state residuated lattice X :

F F is obstinate \Leftrightarrow L / F { 0 , 1 } L/F \cong \lbrace 0,1\rbrace ;

F F is primary \Leftrightarrow L / F L/F is a state local residuated lattice;

and that every g-state residuated lattice X is a subdirect product of { X / P λ } , where P λ is a prime state filter of X . Moreover, we show that the quotient MTL-algebra X / P of a state residuated lattice X by a state prime filter P is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.

How to cite

top

Kondo, Michiro. "Some properties of state filters in state residuated lattices." Mathematica Bohemica 146.4 (2021): 375-395. <http://eudml.org/doc/297725>.

@article{Kondo2021,
abstract = {We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: and that every g-state residuated lattice $X$ is a subdirect product of $\lbrace X/P_\{\lambda \} \rbrace $, where $P_\{\lambda \}$ is a prime state filter of $X$. Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.},
author = {Kondo, Michiro},
journal = {Mathematica Bohemica},
keywords = {obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice},
language = {eng},
number = {4},
pages = {375-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of state filters in state residuated lattices},
url = {http://eudml.org/doc/297725},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Kondo, Michiro
TI - Some properties of state filters in state residuated lattices
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 375
EP - 395
AB - We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: and that every g-state residuated lattice $X$ is a subdirect product of $\lbrace X/P_{\lambda } \rbrace $, where $P_{\lambda }$ is a prime state filter of $X$. Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
LA - eng
KW - obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice
UR - http://eudml.org/doc/297725
ER -

References

top
  1. Ciungu, L. C., Bosbach and Riečan states on residuated lattices, J. Appl. Funct. Anal. 3 (2008), 175-188. (2008) Zbl1170.03030MR2369429
  2. Constantinescu, N. M., 10.1007/s00500-012-0864-y, Soft Comput. 16 (2012), 1915-1922. (2012) Zbl1291.03116DOI10.1007/s00500-012-0864-y
  3. Constantinescu, N. M., 10.1007/s00500-014-1277-x, Soft Comput. 18 (2014), 1841-1852. (2014) Zbl1331.03043DOI10.1007/s00500-014-1277-x
  4. Dvurečenskij, A., 10.1023/A:1012490620450, Stud. Log. 68 (2001), 301-327. (2001) Zbl0999.06011MR1865858DOI10.1023/A:1012490620450
  5. Dvurečenskij, A., Rachůnek, J., On Riečan and Bosbach states for bounded non-commutative R -monoids, Math. Slovaca 56 (2006), 487-500. (2006) Zbl1141.06005MR2293582
  6. Dvurečenskij, A., Rachůnek, J., 10.1007/s00233-005-0545-6, Semigroup Forum 72 (2006), 190-206. (2006) Zbl1105.06010MR2216089DOI10.1007/s00233-005-0545-6
  7. Dvurečenskij, A., Rachůnek, J., Šalounová, D., 10.1016/j.fss.2011.05.023, Fuzzy Sets Syst. 187 (2012), 58-76. (2012) Zbl1266.03071MR2851996DOI10.1016/j.fss.2011.05.023
  8. Flaminio, T., Montagna, F., 10.1016/j.ijar.2008.07.006, Int. J. Approx. Reasoning 50 (2009), 138-152. (2009) Zbl1185.06007MR2519034DOI10.1016/j.ijar.2008.07.006
  9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., 10.1016/S0049-237X(07)80005-X, Studies in Logic and the Foundations of Mathematics 151. Elsevier, Amsterdam (2007). (2007) Zbl1171.03001MR2531579DOI10.1016/S0049-237X(07)80005-X
  10. Georgescu, G., 10.1007/s00500-003-0266-2, Soft Comput. 8 (2004), 217-230. (2004) Zbl1081.06012DOI10.1007/s00500-003-0266-2
  11. Hájek, P., 10.1007/978-94-011-5300-3, Trends in Logic--Studia Logica Library 4. Kluwer, Dordrecht (1998). (1998) Zbl0937.03030MR1900263DOI10.1007/978-94-011-5300-3
  12. Hart, J. B., Rafter, L., Tsinakis, C., 10.1142/S0218196702001048, Int. J. Algebra Comput. 12 (2002), 509-524. (2002) Zbl1011.06006MR1919685DOI10.1142/S0218196702001048
  13. Haveshki, M., Saeid, A. Borumand, Eslami, E., 10.1007/s00500-005-0534-4, Soft Comput. 10 (2006), 657-664. (2006) Zbl1103.03062DOI10.1007/s00500-005-0534-4
  14. Haveshki, M., Mohamadhasani, M., 10.1007/s00500-012-0884-7, Soft Comput. 16 (2012), 2165-2173. (2012) Zbl1288.03043DOI10.1007/s00500-012-0884-7
  15. He, P., Xin, X., Yang, Y., 10.1007/s00500-015-1620-x, Soft Comput. 19 (2015), 2083-2094. (2015) Zbl1364.06003DOI10.1007/s00500-015-1620-x
  16. Kondo, M., 10.1007/s00500-013-1100-0, Soft Comput. 18 (2014), 427-432. (2014) Zbl1386.03073DOI10.1007/s00500-013-1100-0
  17. Kondo, M., 10.2478/s12175-014-0261-3, Math. Slovaca 64 (2014), 1093-1104. (2014) Zbl1342.06009MR3277839DOI10.2478/s12175-014-0261-3
  18. Kondo, M., 10.1007/s00500-016-2324-6, Soft Comput. 21 (2017), 6063-6071. (2017) Zbl1384.03119DOI10.1007/s00500-016-2324-6
  19. Kondo, M., Kawaguchi, M. F., 10.1109/ISMVL.2016.29, Proceedings of the 46th IEEE International Symposium on Multiple-Valued Logic IEEE Computer Society, Los Alamitos (2016), 162-166. (2016) MR3570629DOI10.1109/ISMVL.2016.29
  20. Kondo, M., Watari, O., Kawaguchi, M. F., Miyakoshi, M., A Logic Determined by Commutative Residuated Lattices, New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Volume 2 (2007), Universitas Ostraviensis, Ostrava (2007), 45-48. (2007) 
  21. Kôpka, F., Chovanec, F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) Zbl0789.03048MR1290269
  22. Rachůnek, J., Šalounová, D., 10.1007/s00500-010-0568-0, Soft Comput. 15 (2011), 327-334. (2011) Zbl1260.06014DOI10.1007/s00500-010-0568-0
  23. Turunen, E., 10.1007/s001530100088, Arch. Math. Logic 40 (2001), 467-473. (2001) Zbl1030.03048MR1854896DOI10.1007/s001530100088
  24. Ward, M., Dilworth, R. P., 10.1090/S0002-9947-1939-1501995-3, Trans. Am. Math. Soc. 45 (1939), 335-354. (1939) Zbl0021.10801MR1501995DOI10.1090/S0002-9947-1939-1501995-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.