Some properties of state filters in state residuated lattices

Michiro Kondo

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 375-395
  • ISSN: 0862-7959

Abstract

top
We consider properties of state filters of state residuated lattices and prove that for every state filter F of a state residuated lattice X :

F F is obstinate \Leftrightarrow L / F { 0 , 1 } L/F \cong \lbrace 0,1\rbrace ;

F F is primary \Leftrightarrow L / F L/F is a state local residuated lattice;

and that every g-state residuated lattice X is a subdirect product of { X / P λ } , where P λ is a prime state filter of X . Moreover, we show that the quotient MTL-algebra X / P of a state residuated lattice X by a state prime filter P is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.

How to cite

top

Kondo, Michiro. "Some properties of state filters in state residuated lattices." Mathematica Bohemica 146.4 (2021): 375-395. <http://eudml.org/doc/297725>.

@article{Kondo2021,
abstract = {We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: and that every g-state residuated lattice $X$ is a subdirect product of $\lbrace X/P_\{\lambda \} \rbrace $, where $P_\{\lambda \}$ is a prime state filter of $X$. Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.},
author = {Kondo, Michiro},
journal = {Mathematica Bohemica},
keywords = {obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice},
language = {eng},
number = {4},
pages = {375-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some properties of state filters in state residuated lattices},
url = {http://eudml.org/doc/297725},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Kondo, Michiro
TI - Some properties of state filters in state residuated lattices
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 375
EP - 395
AB - We consider properties of state filters of state residuated lattices and prove that for every state filter $F$ of a state residuated lattice $X$: and that every g-state residuated lattice $X$ is a subdirect product of $\lbrace X/P_{\lambda } \rbrace $, where $P_{\lambda }$ is a prime state filter of $X$. Moreover, we show that the quotient MTL-algebra $X/P$ of a state residuated lattice $X$ by a state prime filter $P$ is not always totally ordered, although the quotient MTL-algebra by a prime filter is totally ordered.
LA - eng
KW - obstinate state filter; prime state filter; Boolean state filter; primary state filter; state filter; residuated lattice; local residuated lattice
UR - http://eudml.org/doc/297725
ER -

References

top
  1. Ciungu, L. C., Bosbach and Riečan states on residuated lattices, J. Appl. Funct. Anal. 3 (2008), 175-188. (2008) Zbl1170.03030MR2369429
  2. Constantinescu, N. M., 10.1007/s00500-012-0864-y, Soft Comput. 16 (2012), 1915-1922. (2012) Zbl1291.03116DOI10.1007/s00500-012-0864-y
  3. Constantinescu, N. M., 10.1007/s00500-014-1277-x, Soft Comput. 18 (2014), 1841-1852. (2014) Zbl1331.03043DOI10.1007/s00500-014-1277-x
  4. Dvurečenskij, A., 10.1023/A:1012490620450, Stud. Log. 68 (2001), 301-327. (2001) Zbl0999.06011MR1865858DOI10.1023/A:1012490620450
  5. Dvurečenskij, A., Rachůnek, J., On Riečan and Bosbach states for bounded non-commutative R -monoids, Math. Slovaca 56 (2006), 487-500. (2006) Zbl1141.06005MR2293582
  6. Dvurečenskij, A., Rachůnek, J., 10.1007/s00233-005-0545-6, Semigroup Forum 72 (2006), 190-206. (2006) Zbl1105.06010MR2216089DOI10.1007/s00233-005-0545-6
  7. Dvurečenskij, A., Rachůnek, J., Šalounová, D., 10.1016/j.fss.2011.05.023, Fuzzy Sets Syst. 187 (2012), 58-76. (2012) Zbl1266.03071MR2851996DOI10.1016/j.fss.2011.05.023
  8. Flaminio, T., Montagna, F., 10.1016/j.ijar.2008.07.006, Int. J. Approx. Reasoning 50 (2009), 138-152. (2009) Zbl1185.06007MR2519034DOI10.1016/j.ijar.2008.07.006
  9. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., 10.1016/S0049-237X(07)80005-X, Studies in Logic and the Foundations of Mathematics 151. Elsevier, Amsterdam (2007). (2007) Zbl1171.03001MR2531579DOI10.1016/S0049-237X(07)80005-X
  10. Georgescu, G., 10.1007/s00500-003-0266-2, Soft Comput. 8 (2004), 217-230. (2004) Zbl1081.06012DOI10.1007/s00500-003-0266-2
  11. Hájek, P., 10.1007/978-94-011-5300-3, Trends in Logic--Studia Logica Library 4. Kluwer, Dordrecht (1998). (1998) Zbl0937.03030MR1900263DOI10.1007/978-94-011-5300-3
  12. Hart, J. B., Rafter, L., Tsinakis, C., 10.1142/S0218196702001048, Int. J. Algebra Comput. 12 (2002), 509-524. (2002) Zbl1011.06006MR1919685DOI10.1142/S0218196702001048
  13. Haveshki, M., Saeid, A. Borumand, Eslami, E., 10.1007/s00500-005-0534-4, Soft Comput. 10 (2006), 657-664. (2006) Zbl1103.03062DOI10.1007/s00500-005-0534-4
  14. Haveshki, M., Mohamadhasani, M., 10.1007/s00500-012-0884-7, Soft Comput. 16 (2012), 2165-2173. (2012) Zbl1288.03043DOI10.1007/s00500-012-0884-7
  15. He, P., Xin, X., Yang, Y., 10.1007/s00500-015-1620-x, Soft Comput. 19 (2015), 2083-2094. (2015) Zbl1364.06003DOI10.1007/s00500-015-1620-x
  16. Kondo, M., 10.1007/s00500-013-1100-0, Soft Comput. 18 (2014), 427-432. (2014) Zbl1386.03073DOI10.1007/s00500-013-1100-0
  17. Kondo, M., 10.2478/s12175-014-0261-3, Math. Slovaca 64 (2014), 1093-1104. (2014) Zbl1342.06009MR3277839DOI10.2478/s12175-014-0261-3
  18. Kondo, M., 10.1007/s00500-016-2324-6, Soft Comput. 21 (2017), 6063-6071. (2017) Zbl1384.03119DOI10.1007/s00500-016-2324-6
  19. Kondo, M., Kawaguchi, M. F., 10.1109/ISMVL.2016.29, Proceedings of the 46th IEEE International Symposium on Multiple-Valued Logic IEEE Computer Society, Los Alamitos (2016), 162-166. (2016) MR3570629DOI10.1109/ISMVL.2016.29
  20. Kondo, M., Watari, O., Kawaguchi, M. F., Miyakoshi, M., A Logic Determined by Commutative Residuated Lattices, New Dimensions in Fuzzy Logic and Related Technologies. Proceedings of the 5th EUSFLAT Conference, Volume 2 (2007), Universitas Ostraviensis, Ostrava (2007), 45-48. (2007) 
  21. Kôpka, F., Chovanec, F., D-posets, Math. Slovaca 44 (1994), 21-34. (1994) Zbl0789.03048MR1290269
  22. Rachůnek, J., Šalounová, D., 10.1007/s00500-010-0568-0, Soft Comput. 15 (2011), 327-334. (2011) Zbl1260.06014DOI10.1007/s00500-010-0568-0
  23. Turunen, E., 10.1007/s001530100088, Arch. Math. Logic 40 (2001), 467-473. (2001) Zbl1030.03048MR1854896DOI10.1007/s001530100088
  24. Ward, M., Dilworth, R. P., 10.1090/S0002-9947-1939-1501995-3, Trans. Am. Math. Soc. 45 (1939), 335-354. (1939) Zbl0021.10801MR1501995DOI10.1090/S0002-9947-1939-1501995-3

NotesEmbed ?

top

You must be logged in to post comments.