Page 1 Next

Displaying 1 – 20 of 21

Showing per page

A non commutative generalization of -autonomous lattices

P. Emanovský, Jiří Rachůnek (2008)

Czechoslovak Mathematical Journal

Pseudo -autonomous lattices are non-commutative generalizations of -autonomous lattices. It is proved that the class of pseudo -autonomous lattices is a variety of algebras which is term equivalent to the class of dualizing residuated lattices. It is shown that the kernels of congruences of pseudo -autonomous lattices can be described as their normal ideals.

A note on Sugihara algebras.

Josep M. Font, Gonzalo Rodríguez Pérez (1992)

Publicacions Matemàtiques

In [4] Blok and Pigozzi prove syntactically that RM, the propositional calculus also called R-Mingle, is algebraizable, and as a consequence there is a unique quasivariety (the so-called equivalent quasivariety semantics) associated to it. In [3] it is stated that this quasivariety is the variety of Sugihara algebras. Starting from this fact, in this paper we present an equational base for this variety obtained as a subvariety of the variety of R-algebras, found in [7] to be associated in the same...

Classes of fuzzy filters of residuated lattice ordered monoids

Jiří Rachůnek, Dana Šalounová (2010)

Mathematica Bohemica

The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of BL -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...

From two- to four-valued logic

Chris Brink (1993)

Banach Center Publications

The purpose of this note is to show that a known and natural four-valued logic co-exists with classical two-valued logic in the familiar context of truth tables. The tool required is the power construction.

Information frames, implication systems and modalities.

Marcello D'Agostino, Dov M. Gabbay, Alessandra Russo (1996)

Mathware and Soft Computing

We investigate the logical systems which result from introducing the modalities L and M into the family of substructural implication logics (including relevant, linear and intuitionistic implication). Our results lead to the formulation of a uniform labelled refutation system for these logics.

Learning discrete categorial grammars from structures

Jérôme Besombes, Jean-Yves Marion (2008)

RAIRO - Theoretical Informatics and Applications

We define the class of discrete classical categorial grammars, similar in the spirit to the notion of reversible class of languages introduced by Angluin and Sakakibara. We show that the class of discrete classical categorial grammars is identifiable from positive structured examples. For this, we provide an original algorithm, which runs in quadratic time in the size of the examples. This work extends the previous results of Kanazawa. Indeed, in our work, several types can be associated to a word...

Residuation in twist products and pseudo-Kleene posets

Ivan Chajda, Helmut Länger (2022)

Mathematica Bohemica

M. Busaniche, R. Cignoli (2014), C. Tsinakis and A. M. Wille (2006) showed that every residuated lattice induces a residuation on its full twist product. For their construction they used also lattice operations. We generalize this problem to left-residuated groupoids which need not be lattice-ordered. Hence, we cannot use the same construction for the full twist product. We present another appropriate construction which, however, does not preserve commutativity and associativity of multiplication....

Currently displaying 1 – 20 of 21

Page 1 Next