Ramsey numbers for trees II
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 351-372
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSun, Zhi-Hong. "Ramsey numbers for trees II." Czechoslovak Mathematical Journal 71.2 (2021): 351-372. <http://eudml.org/doc/297748>.
@article{Sun2021,
abstract = {Let $r(G_1, G_2)$ be the Ramsey number of the two graphs $G_1$ and $G_2$. For $n_1\ge n_2\ge 1$ let $S(n_1,n_2)$ be the double star given by $V(S(n_1,n_2))=\lbrace v_0,v_1,\ldots ,v_\{n_1\},w_0$, $w_1,\ldots ,w_\{n_2\}\rbrace $ and $E(S(n_1,n_2))=\lbrace v_0v_1,\ldots ,v_0v_\{n_1\},v_0w_0, w_0w_1,\ldots ,w_0w_\{n_2\}\rbrace $. We determine $r(K_\{1,m-1\},$$S(n_1,n_2))$ under certain conditions. For $n\ge 6$ let $T_n^3=S(n-5,3)$, $T_n^\{\prime \prime \}=(V,E_2)$ and $T_n^\{\prime \prime \prime \} =(V,E_3)$, where $V=\lbrace v_0,v_1,\ldots ,v_\{n-1\}\rbrace $, $E_2=\lbrace v_0v_1,\ldots ,v_0v_\{n-4\},v_1v_\{n-3\}$, $v_1v_\{n-2\}, v_2v_\{n-1\}\rbrace $ and $E_3=\lbrace v_0v_1,\ldots , v_0v_\{n-4\},v_1v_\{n-3\},$$v_2v_\{n-2\},v_3v_\{n-1\}\rbrace $. We also obtain explicit formulas for $r(K_\{1,m-1\},T_n)$, $r(T_m^\{\prime \},T_n)$$(n\ge m+3)$, $r(T_n,T_n)$, $r(T_n^\{\prime \},T_n)$ and $r(P_n,T_n)$, where $T_n\in \lbrace T_n^\{\prime \prime \},T_n^\{\prime \prime \prime \},T_n^3\rbrace $, $P_n$ is the path on $n$ vertices and $T_n^\{\prime \}$ is the unique tree with $n$ vertices and maximal degree $n-2$.},
author = {Sun, Zhi-Hong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Ramsey number; tree; Turán's problem},
language = {eng},
number = {2},
pages = {351-372},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ramsey numbers for trees II},
url = {http://eudml.org/doc/297748},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Sun, Zhi-Hong
TI - Ramsey numbers for trees II
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 351
EP - 372
AB - Let $r(G_1, G_2)$ be the Ramsey number of the two graphs $G_1$ and $G_2$. For $n_1\ge n_2\ge 1$ let $S(n_1,n_2)$ be the double star given by $V(S(n_1,n_2))=\lbrace v_0,v_1,\ldots ,v_{n_1},w_0$, $w_1,\ldots ,w_{n_2}\rbrace $ and $E(S(n_1,n_2))=\lbrace v_0v_1,\ldots ,v_0v_{n_1},v_0w_0, w_0w_1,\ldots ,w_0w_{n_2}\rbrace $. We determine $r(K_{1,m-1},$$S(n_1,n_2))$ under certain conditions. For $n\ge 6$ let $T_n^3=S(n-5,3)$, $T_n^{\prime \prime }=(V,E_2)$ and $T_n^{\prime \prime \prime } =(V,E_3)$, where $V=\lbrace v_0,v_1,\ldots ,v_{n-1}\rbrace $, $E_2=\lbrace v_0v_1,\ldots ,v_0v_{n-4},v_1v_{n-3}$, $v_1v_{n-2}, v_2v_{n-1}\rbrace $ and $E_3=\lbrace v_0v_1,\ldots , v_0v_{n-4},v_1v_{n-3},$$v_2v_{n-2},v_3v_{n-1}\rbrace $. We also obtain explicit formulas for $r(K_{1,m-1},T_n)$, $r(T_m^{\prime },T_n)$$(n\ge m+3)$, $r(T_n,T_n)$, $r(T_n^{\prime },T_n)$ and $r(P_n,T_n)$, where $T_n\in \lbrace T_n^{\prime \prime },T_n^{\prime \prime \prime },T_n^3\rbrace $, $P_n$ is the path on $n$ vertices and $T_n^{\prime }$ is the unique tree with $n$ vertices and maximal degree $n-2$.
LA - eng
KW - Ramsey number; tree; Turán's problem
UR - http://eudml.org/doc/297748
ER -
References
top- Burr, S. A., Erdős, P., Extremal Ramsey theory for graphs, Util. Math. 9 (1976), 247-258. (1976) Zbl0333.05119MR0429622
- Chartrand, G., Lesniak, L., 10.1201/b19731, Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey (1986). (1986) Zbl0666.05001MR0834583DOI10.1201/b19731
- Faudree, R. J., Schelp, R. H., 10.1016/0095-8956(75)90080-5, J. Comb. Theory, Ser. B 19 (1975), 150-160. (1975) Zbl0286.05111MR0412023DOI10.1016/0095-8956(75)90080-5
- Grossman, J. W., Harary, F., Klawe, M., 10.1016/0012-365X(79)90132-8, Discrete Math. 28 (1979), 247-254. (1979) Zbl0434.05052MR0548624DOI10.1016/0012-365X(79)90132-8
- Guo, Y., Volkmann, L., Tree-Ramsey numbers, Australas. J. Comb. 11 (1995), 169-175. (1995) Zbl0828.05043MR1327331
- Harary, F., 10.1007/BFb0067364, Graph Theory and Applications Lecture Notes in Mathematics 303. Springer, Berlin (1972), 125-138. (1972) Zbl0247.05118MR0342431DOI10.1007/BFb0067364
- Hua, L. K., 10.1007/978-3-642-68130-1, Springer, Berlin (1982). (1982) Zbl0483.10001MR0665428DOI10.1007/978-3-642-68130-1
- Radziszowski, S. P., 10.37236/21, Electron. J. Comb. 2017 (2017), Article ID DS1, 104 pages. (2017) MR1670625DOI10.37236/21
- Sun, Z.-H., 10.1017/S0004972711003388, Bull. Aust. Math. Soc. 86 (2012), 164-176. (2012) Zbl1247.05150MR2960237DOI10.1017/S0004972711003388
- Sun, Z.-H., Tu, Y.-Y., Turán’s problem for trees with maximal degree , Available at https://arxiv.org/abs/1410.7282 (2014), 28 pages. (2014)
- Sun, Z.-H., Wang, L.-L., Turán's problem for trees, J. Comb. Number Theory 3 (2011), 51-69. (2011) Zbl1247.05117MR2908182
- Sun, Z.-H., Wang, L.-L., Wu, Y.-L., 10.4064/cm139-2-8, Colloq. Math. 139 (2015), 273-298. (2015) Zbl1312.05089MR3337221DOI10.4064/cm139-2-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.