Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice

Sergiy Bak

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 1, page 1-13
  • ISSN: 0044-8753

Abstract

top
In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed c > 0 in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.

How to cite

top

Bak, Sergiy. "Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice." Archivum Mathematicum 058.1 (2022): 1-13. <http://eudml.org/doc/297780>.

@article{Bak2022,
abstract = {In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.},
author = {Bak, Sergiy},
journal = {Archivum Mathematicum},
keywords = {nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice},
url = {http://eudml.org/doc/297780},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Bak, Sergiy
TI - Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 1
SP - 1
EP - 13
AB - In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.
LA - eng
KW - nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem
UR - http://eudml.org/doc/297780
ER -

References

top
  1. Aubry, S., 10.1016/S0167-2789(96)00261-8, Physica D 103 (1997), 201–250. (1997) DOI10.1016/S0167-2789(96)00261-8
  2. Bak, S., 10.15407/mag14.01.016, Zh. Mat. Fiz. Anal. Geom. 14 (1) (2018), 16–26. (2018) MR3783757DOI10.15407/mag14.01.016
  3. Bak, S.M., Travelling waves in chains of oscillators, Mat. Stud. 26 (2) (2006), 140–153. (2006) MR2314304
  4. Bak, S.M., Periodic travelling waves in chains of oscillators, Commun. Math. Anal. 3 (1) (2007), 19–26. (2007) MR2347772
  5. Bak, S.M., Existence of periodic traveling waves in systems of nonlinear oscillators on 2D-lattice, Mat. Stud. 35 (1) (2011), 60–65, (in Ukrainian). (2011) MR2816218
  6. Bak, S.M., Periodic travelling waves in the discrete sine–Gordon equation on 2D-lattice, Math. Comput. Model. Phys. Math. Sci. 9 (2013), 5–10, (in Ukrainian). (2013) 
  7. Bak, S.M., 10.1007/s10958-016-2966-z, J. Math. Sci. 217 (2) (2016), 187–197. (2016) MR3532455DOI10.1007/s10958-016-2966-z
  8. Bak, S.M., 10.1007/s11253-017-1378-7, Ukr. Math. J. 69 (4) (2017), 509–520. (2017) MR3655283DOI10.1007/s11253-017-1378-7
  9. Bak, S.M., Homoclinic travelling waves in discrete sine-Gordon equation with nonlinear interaction on 2D lattice, Mat. Stud. 52 (2) (2019), 176–184. (2019) MR4056523
  10. Bak, S.N., Pankov, A.A., Travelling waves in systems of oscillators on 2D-lattices, J. Math. Sci. 174 (4) (2011), 916–920. (2011) MR2768150
  11. Bell, J., 10.1016/0025-5564(81)90085-7, Math. Biosci. 54 (1981), 181–190. (1981) DOI10.1016/0025-5564(81)90085-7
  12. Braun, O.M., Kivshar, Y.S., 10.1016/S0370-1573(98)00029-5, Phys. Rep. 306 (1998), 1–108. (1998) DOI10.1016/S0370-1573(98)00029-5
  13. Braun, O.M., Kivshar, Y.S., The Frenkel-Kontorova Model. Concepts, Methods and Applications, Berlin: Springer, 2004. (2004) MR2035039
  14. Cahn, J.W., 10.1016/0001-6160(60)90110-3, Acta Metall. 8 (1960), 554–562. (1960) DOI10.1016/0001-6160(60)90110-3
  15. Cahn, J.W., Mallet-Paret, J., van Vleck, E.S., 10.1137/S0036139996312703, SIAM J. Appl. Math. 59 (2) (1998), 455–493. (1998) DOI10.1137/S0036139996312703
  16. Chow, S.N., Mallet-Paret, J., Shen, W., 10.1006/jdeq.1998.3478, J. Differential Equations 149 (1998), 248–291. (1998) DOI10.1006/jdeq.1998.3478
  17. Chua, L.O., Roska, T., 10.1109/81.222795, IEEE Trans. Circuits Syst. 40 (1993), 147–156. (1993) DOI10.1109/81.222795
  18. Eilbeck, J.C., Flesch, R., 10.1016/0375-9601(90)90326-J, Phys. Lett. A 149 (1990), 200–202. (1990) DOI10.1016/0375-9601(90)90326-J
  19. Fečkan, M., Rothos, V., 10.1088/0951-7715/20/2/005, Nonlinearity 20 (2007), 319–341. (2007) MR2290465DOI10.1088/0951-7715/20/2/005
  20. Flach, S., Willis, C.R., 10.1016/S0370-1573(97)00068-9, Phys. Rep. 295 (1998), 181–264. (1998) DOI10.1016/S0370-1573(97)00068-9
  21. Friesecke, G., Matthies, K., Geometric solitary waves in a 2D math-spring lattice, Discrete Contin. Dyn. Syst. 3 (1) (2003), 105–114. (2003) MR1951571
  22. Hupkes, H.J., Morelli, L., Stehlí, P., Švígler, V., Multichromatic travelling waves for lattice Nagumo equations, Appl. Math. Comput. 361 (15) (2019), 430–452. (2019) MR3961829
  23. Iooss, G., Kirschgässner, K., 10.1007/s002200050821, Commun. Math. Phys. 211 (2000), 439–464. (2000) DOI10.1007/s002200050821
  24. Keener, J.P., 10.1137/0147038, SIAM J. Appl. Math. 47 (3) (1987), 556–572. (1987) DOI10.1137/0147038
  25. Kreiner, C.-F., Zimmer, J., Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction, Discrete Contin. Dyn. Syst. 25 (3) (2009), 1–17. (2009) MR2533982
  26. Kreiner, C.-F., Zimmer, J., 10.1016/j.na.2008.04.018, Nonlinear Anal. 70 (9) (2009), 3146–3158. (2009) MR2503060DOI10.1016/j.na.2008.04.018
  27. Laplante, J.P., Erneux, T., 10.1021/j100191a038, J. Phys. Chem. 96 (1992), 4931–4934. (1992) DOI10.1021/j100191a038
  28. Makita, P.D., 10.1016/j.na.2010.11.011, Nonlinear Anal. 74 (2011), 2071–2086. (2011) MR2781738DOI10.1016/j.na.2010.11.011
  29. Pankov, A., Traveling waves and periodic oscillations in Fermi-Pasta-Ulam lattices, London: Imperial College Press, 2005. (2005) MR2156331
  30. Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1986. (1986) Zbl0609.58002
  31. Wattis, J.A.D., 10.1088/0305-4470/26/5/036, J. Phys. A 26 (1993), 1193–1209. (1993) DOI10.1088/0305-4470/26/5/036
  32. Wattis, J.A.D., 10.1088/0031-8949/50/3/003, Phys. Scripta 50 (3) (1994), 238–242. (1994) DOI10.1088/0031-8949/50/3/003
  33. Wattis, J.A.D., 10.1088/0305-4470/29/24/035, J. Phys. A 29 (1996), 8139–8157. (1996) DOI10.1088/0305-4470/29/24/035
  34. Willem, M., Minimax theorems, Boston, Birkhäuser, 1996. (1996) Zbl0856.49001
  35. Zhang, L., Guo, S., 10.1016/j.jde.2014.04.016, J. Differential Equations 257 (2014), 759–783. (2014) MR3208090DOI10.1016/j.jde.2014.04.016

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.