Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
Archivum Mathematicum (2022)
- Volume: 058, Issue: 1, page 1-13
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBak, Sergiy. "Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice." Archivum Mathematicum 058.1 (2022): 1-13. <http://eudml.org/doc/297780>.
@article{Bak2022,
abstract = {In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.},
author = {Bak, Sergiy},
journal = {Archivum Mathematicum},
keywords = {nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice},
url = {http://eudml.org/doc/297780},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Bak, Sergiy
TI - Periodic traveling waves in the system of linearly coupled nonlinear oscillators on 2D-lattice
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 1
SP - 1
EP - 13
AB - In this paper we obtain results on existence of non-constant periodic traveling waves with arbitrary speed $c>0$ in infinite system of linearly coupled nonlinear oscillators on a two-dimensional lattice. Sufficient conditions for the existence of such solutions are obtained with the aid of critical point method and linking theorem.
LA - eng
KW - nonlinear oscillators; 2D-lattice; traveling waves; critical points; linking theorem
UR - http://eudml.org/doc/297780
ER -
References
top- Aubry, S., 10.1016/S0167-2789(96)00261-8, Physica D 103 (1997), 201–250. (1997) DOI10.1016/S0167-2789(96)00261-8
- Bak, S., 10.15407/mag14.01.016, Zh. Mat. Fiz. Anal. Geom. 14 (1) (2018), 16–26. (2018) MR3783757DOI10.15407/mag14.01.016
- Bak, S.M., Travelling waves in chains of oscillators, Mat. Stud. 26 (2) (2006), 140–153. (2006) MR2314304
- Bak, S.M., Periodic travelling waves in chains of oscillators, Commun. Math. Anal. 3 (1) (2007), 19–26. (2007) MR2347772
- Bak, S.M., Existence of periodic traveling waves in systems of nonlinear oscillators on 2D-lattice, Mat. Stud. 35 (1) (2011), 60–65, (in Ukrainian). (2011) MR2816218
- Bak, S.M., Periodic travelling waves in the discrete sine–Gordon equation on 2D-lattice, Math. Comput. Model. Phys. Math. Sci. 9 (2013), 5–10, (in Ukrainian). (2013)
- Bak, S.M., 10.1007/s10958-016-2966-z, J. Math. Sci. 217 (2) (2016), 187–197. (2016) MR3532455DOI10.1007/s10958-016-2966-z
- Bak, S.M., 10.1007/s11253-017-1378-7, Ukr. Math. J. 69 (4) (2017), 509–520. (2017) MR3655283DOI10.1007/s11253-017-1378-7
- Bak, S.M., Homoclinic travelling waves in discrete sine-Gordon equation with nonlinear interaction on 2D lattice, Mat. Stud. 52 (2) (2019), 176–184. (2019) MR4056523
- Bak, S.N., Pankov, A.A., Travelling waves in systems of oscillators on 2D-lattices, J. Math. Sci. 174 (4) (2011), 916–920. (2011) MR2768150
- Bell, J., 10.1016/0025-5564(81)90085-7, Math. Biosci. 54 (1981), 181–190. (1981) DOI10.1016/0025-5564(81)90085-7
- Braun, O.M., Kivshar, Y.S., 10.1016/S0370-1573(98)00029-5, Phys. Rep. 306 (1998), 1–108. (1998) DOI10.1016/S0370-1573(98)00029-5
- Braun, O.M., Kivshar, Y.S., The Frenkel-Kontorova Model. Concepts, Methods and Applications, Berlin: Springer, 2004. (2004) MR2035039
- Cahn, J.W., 10.1016/0001-6160(60)90110-3, Acta Metall. 8 (1960), 554–562. (1960) DOI10.1016/0001-6160(60)90110-3
- Cahn, J.W., Mallet-Paret, J., van Vleck, E.S., 10.1137/S0036139996312703, SIAM J. Appl. Math. 59 (2) (1998), 455–493. (1998) DOI10.1137/S0036139996312703
- Chow, S.N., Mallet-Paret, J., Shen, W., 10.1006/jdeq.1998.3478, J. Differential Equations 149 (1998), 248–291. (1998) DOI10.1006/jdeq.1998.3478
- Chua, L.O., Roska, T., 10.1109/81.222795, IEEE Trans. Circuits Syst. 40 (1993), 147–156. (1993) DOI10.1109/81.222795
- Eilbeck, J.C., Flesch, R., 10.1016/0375-9601(90)90326-J, Phys. Lett. A 149 (1990), 200–202. (1990) DOI10.1016/0375-9601(90)90326-J
- Fečkan, M., Rothos, V., 10.1088/0951-7715/20/2/005, Nonlinearity 20 (2007), 319–341. (2007) MR2290465DOI10.1088/0951-7715/20/2/005
- Flach, S., Willis, C.R., 10.1016/S0370-1573(97)00068-9, Phys. Rep. 295 (1998), 181–264. (1998) DOI10.1016/S0370-1573(97)00068-9
- Friesecke, G., Matthies, K., Geometric solitary waves in a 2D math-spring lattice, Discrete Contin. Dyn. Syst. 3 (1) (2003), 105–114. (2003) MR1951571
- Hupkes, H.J., Morelli, L., Stehlí, P., Švígler, V., Multichromatic travelling waves for lattice Nagumo equations, Appl. Math. Comput. 361 (15) (2019), 430–452. (2019) MR3961829
- Iooss, G., Kirschgässner, K., 10.1007/s002200050821, Commun. Math. Phys. 211 (2000), 439–464. (2000) DOI10.1007/s002200050821
- Keener, J.P., 10.1137/0147038, SIAM J. Appl. Math. 47 (3) (1987), 556–572. (1987) DOI10.1137/0147038
- Kreiner, C.-F., Zimmer, J., Heteroclinic travelling waves for the lattice sine-Gordon equation with linear pair interaction, Discrete Contin. Dyn. Syst. 25 (3) (2009), 1–17. (2009) MR2533982
- Kreiner, C.-F., Zimmer, J., 10.1016/j.na.2008.04.018, Nonlinear Anal. 70 (9) (2009), 3146–3158. (2009) MR2503060DOI10.1016/j.na.2008.04.018
- Laplante, J.P., Erneux, T., 10.1021/j100191a038, J. Phys. Chem. 96 (1992), 4931–4934. (1992) DOI10.1021/j100191a038
- Makita, P.D., 10.1016/j.na.2010.11.011, Nonlinear Anal. 74 (2011), 2071–2086. (2011) MR2781738DOI10.1016/j.na.2010.11.011
- Pankov, A., Traveling waves and periodic oscillations in Fermi-Pasta-Ulam lattices, London: Imperial College Press, 2005. (2005) MR2156331
- Rabinowitz, P.H., Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, RI, 1986. (1986) Zbl0609.58002
- Wattis, J.A.D., 10.1088/0305-4470/26/5/036, J. Phys. A 26 (1993), 1193–1209. (1993) DOI10.1088/0305-4470/26/5/036
- Wattis, J.A.D., 10.1088/0031-8949/50/3/003, Phys. Scripta 50 (3) (1994), 238–242. (1994) DOI10.1088/0031-8949/50/3/003
- Wattis, J.A.D., 10.1088/0305-4470/29/24/035, J. Phys. A 29 (1996), 8139–8157. (1996) DOI10.1088/0305-4470/29/24/035
- Willem, M., Minimax theorems, Boston, Birkhäuser, 1996. (1996) Zbl0856.49001
- Zhang, L., Guo, S., 10.1016/j.jde.2014.04.016, J. Differential Equations 257 (2014), 759–783. (2014) MR3208090DOI10.1016/j.jde.2014.04.016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.