Extrapolated positive definite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems

Raheleh Shokrpour; Ghodrat Ebadi

Applications of Mathematics (2022)

  • Volume: 67, Issue: 3, page 319-340
  • ISSN: 0862-7940

Abstract

top
Recently, Na Huang and Changfeng Ma in (2016) proposed two kinds of typical practical choices of the PPS method. In this paper, we extrapolate two versions of the PPS iterative method, and we introduce the extrapolated Hermitian and skew-Hermitian positive definite and positive semi-definite splitting (EHPPS) iterative method and extrapolated triangular positive definite and positive semi-definite splitting (ETPPS) iterative method. We also investigate convergence analysis and consistency of the proposed iterative methods. Then, we study upper bounds for the spectral radius of iteration matrices and give upper bounds for the extrapolation parameter of the methods. Moreover, the optimal parameters which minimize upper bounds of the spectral radius are obtained. Finally, several numerical examples are given to show the efficiency of the presented method.

How to cite

top

Shokrpour, Raheleh, and Ebadi, Ghodrat. "Extrapolated positive definite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems." Applications of Mathematics 67.3 (2022): 319-340. <http://eudml.org/doc/297868>.

@article{Shokrpour2022,
abstract = {Recently, Na Huang and Changfeng Ma in (2016) proposed two kinds of typical practical choices of the PPS method. In this paper, we extrapolate two versions of the PPS iterative method, and we introduce the extrapolated Hermitian and skew-Hermitian positive definite and positive semi-definite splitting (EHPPS) iterative method and extrapolated triangular positive definite and positive semi-definite splitting (ETPPS) iterative method. We also investigate convergence analysis and consistency of the proposed iterative methods. Then, we study upper bounds for the spectral radius of iteration matrices and give upper bounds for the extrapolation parameter of the methods. Moreover, the optimal parameters which minimize upper bounds of the spectral radius are obtained. Finally, several numerical examples are given to show the efficiency of the presented method.},
author = {Shokrpour, Raheleh, Ebadi, Ghodrat},
journal = {Applications of Mathematics},
keywords = {extrapolated; non-Hermitian; positive definite; skew-Hermitian; splitting; HSS iteration method},
language = {eng},
number = {3},
pages = {319-340},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extrapolated positive definite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems},
url = {http://eudml.org/doc/297868},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Shokrpour, Raheleh
AU - Ebadi, Ghodrat
TI - Extrapolated positive definite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 319
EP - 340
AB - Recently, Na Huang and Changfeng Ma in (2016) proposed two kinds of typical practical choices of the PPS method. In this paper, we extrapolate two versions of the PPS iterative method, and we introduce the extrapolated Hermitian and skew-Hermitian positive definite and positive semi-definite splitting (EHPPS) iterative method and extrapolated triangular positive definite and positive semi-definite splitting (ETPPS) iterative method. We also investigate convergence analysis and consistency of the proposed iterative methods. Then, we study upper bounds for the spectral radius of iteration matrices and give upper bounds for the extrapolation parameter of the methods. Moreover, the optimal parameters which minimize upper bounds of the spectral radius are obtained. Finally, several numerical examples are given to show the efficiency of the presented method.
LA - eng
KW - extrapolated; non-Hermitian; positive definite; skew-Hermitian; splitting; HSS iteration method
UR - http://eudml.org/doc/297868
ER -

References

top
  1. Albrecht, P., Klein, M. P., 10.1137/0721014, SIAM J. Numer. Anal. 21 (1984), 192-201. (1984) Zbl0531.65015MR0731223DOI10.1137/0721014
  2. Axelsson, O., Kucherov, A., 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S, Numer. Linear Algebra Appl. 7 (2000), 197-218. (2000) Zbl1051.65025MR1762967DOI10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO;2-S
  3. Bai, Z.-Z., Benzi, M., Chen, F., 10.1007/s00607-010-0077-0, Computing 87 (2010), 93-111. (2010) Zbl1210.65074MR2640009DOI10.1007/s00607-010-0077-0
  4. Bai, Z.-Z., Golub, G. H., Lu, L.-Z., Yin, J.-F., 10.1137/S1064827503428114, SIAM J. Sci. Comput. 26 (2005), 844-863. (2005) Zbl1079.65028MR2126115DOI10.1137/S1064827503428114
  5. Bai, Z.-Z., Golub, G. H., Ng, M. K., 10.1137/S0895479801395458, SIAM J. Matrix Anal. Appl. 24 (2003), 603-626. (2003) Zbl1036.65032MR1972670DOI10.1137/S0895479801395458
  6. Bai, Z.-Z., Golub, G. H., Ng, M. K., 10.1002/nla.517, Numer. Linear Algebra Appl. 14 (2007), 319-335. (2007) Zbl1199.65097MR2310394DOI10.1002/nla.517
  7. Benzi, M., 10.1137/080723181, SIAM J. Matrix Anal. Appl. 31 (2009), 360-374. (2009) Zbl1191.65025MR2530254DOI10.1137/080723181
  8. Cao, Z., 10.1016/S0168-9274(98)00013-0, Appl. Numer. Math. 27 (1998), 203-209. (1998) Zbl0927.65052MR1634345DOI10.1016/S0168-9274(98)00013-0
  9. Ebadi, G., Alipour, N., Vuik, C., 10.1016/j.apnum.2015.08.010, Appl. Numer. Math. 99 (2016), 137-150. (2016) Zbl1329.65087MR3413898DOI10.1016/j.apnum.2015.08.010
  10. Ebadi, G., Rashedi, S., New variants of global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs, Comput. Methods Differ. Equ. 6 (2018), 111-127. (2018) Zbl1424.65028MR3778524
  11. Evans, D. J., Martins, M. M., 10.1080/00207169208804083, Int. J. Comput. Math. 43 (1992), 161-171. (1992) Zbl0754.65032DOI10.1080/00207169208804083
  12. Hadjidimos, A., 10.1016/0024-3795(84)90100-9, Linear Algebra Appl. 62 (1984), 241-261. (1984) Zbl0567.65015MR0761072DOI10.1016/0024-3795(84)90100-9
  13. Hadjidimos, A., Psimarni, A., Yeyios, A., 10.1016/0024-3795(86)90184-9, Linear Algebra Appl. 75 (1986), 117-132. (1986) Zbl0589.65027MR0825402DOI10.1016/0024-3795(86)90184-9
  14. Hadjidimos, A., Yeyios, A., 10.1016/0024-3795(80)90187-1, Linear Algebra Appl. 30 (1980), 115-128. (1980) Zbl0428.65015MR0568784DOI10.1016/0024-3795(80)90187-1
  15. Huang, N., Ma, C., 10.4208/jcm.1511-m2015-0299, J. Comput. Math. 34 (2016), 300-316. (2016) Zbl1363.65050MR3504482DOI10.4208/jcm.1511-m2015-0299
  16. Krukier, L. A., Chikina, L. G., Belokon, T. V., 10.1016/S0168-9274(01)00112-X, Appl. Numer. Math. 41 (2002), 89-105. (2002) Zbl1004.65042MR1908751DOI10.1016/S0168-9274(01)00112-X
  17. Krukier, L. A., Krukier, B. L., Ren, Z.-R., 10.1002/nla.1870, Numer. Linear Algebra Appl. 21 (2014), 152-170. (2014) Zbl1324.65053MR3150615DOI10.1002/nla.1870
  18. Li, C.-X., Wu, S.-L., 10.1007/s13160-012-0059-z, Japan J. Ind. Appl. Math. 29 (2012), 253-268. (2012) Zbl1267.65038MR2931411DOI10.1007/s13160-012-0059-z
  19. Missirlis, N. M., Evans, D. J., 10.1137/0718037, SIAM J. Numer. Anal. 18 (1981), 591-596. (1981) Zbl0464.65018MR0622695DOI10.1137/0718037
  20. Salkuyeh, D. K., Siahkalaei, T. S., 10.1007/s10092-018-0252-9, Calcolo 55 (2018), Article ID 8, 22 pages. (2018) Zbl1392.65071MR3761177DOI10.1007/s10092-018-0252-9
  21. Song, Y., 10.1016/S0377-0427(99)00060-6, J. Comput. Appl. Math. 106 (1999), 117-129. (1999) Zbl0930.65033MR1696806DOI10.1016/S0377-0427(99)00060-6
  22. Song, Y., Wang, L., 10.1016/S0168-9274(02)00168-X, Appl. Numer. Math. 44 (2003), 401-413. (2003) Zbl1027.65040MR1954432DOI10.1016/S0168-9274(02)00168-X
  23. Wang, L., Song, Y., On the optimization of extrapolation methods for singular linear systems, J. Comput. Math. 26 (2008), 227-239. (2008) Zbl1174.65012MR2395592
  24. Yeyios, A., 10.1155/S0161171281000586, Int. J. Math. Math. Sci. 4 (1981), 753-762. (1981) Zbl0473.65013MR0663659DOI10.1155/S0161171281000586
  25. Yeyios, A., 10.1016/0024-3795(84)90187-3, Linear Algebra Appl. 57 (1984), 191-203. (1984) Zbl0527.65027MR0729272DOI10.1016/0024-3795(84)90187-3
  26. Young, D. M., 10.1016/c2013-0-11733-3, Computer Science and Applied Mathematics. Academic Press, New York (1971). (1971) Zbl0231.65034MR0305568DOI10.1016/c2013-0-11733-3
  27. Zeng, M.-L., Zhang, G.-F., 10.1007/s11075-017-0295-z, Numer. Algorithms 76 (2017), 1021-1037. (2017) Zbl1383.65029MR3736226DOI10.1007/s11075-017-0295-z

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.