On --normal and --quasinormal semi-Hilbertian space operators
Samir Al Mohammady; Sid Ahmed Ould Beinane; Sid Ahmed Ould Ahmed Mahmoud
Mathematica Bohemica (2022)
- Volume: 147, Issue: 2, page 169-186
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAl Mohammady, Samir, Ould Beinane, Sid Ahmed, and Ould Ahmed Mahmoud, Sid Ahmed. "On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators." Mathematica Bohemica 147.2 (2022): 169-186. <http://eudml.org/doc/297917>.
@article{AlMohammady2022,
abstract = {The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let $\{\mathcal \{H\}\}$ be a Hilbert space and let $A$ be a positive bounded operator on $\{\mathcal \{H\}\}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in \{\mathcal \{H\}\}$, induces a semi-norm $\Vert \{\cdot \}\Vert _A$. This makes $\{\mathcal \{H\}\}$ into a semi-Hilbertian space. An operator $T\in \{\mathcal \{B\}\}_A(\{\mathcal \{H\}\})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^\{\sharp _A\})^m]:=T^n(T^\{\sharp _A\})^m-(T^\{\sharp _A\})^mT^n=0$ for some positive integers $n$ and $m$.},
author = {Al Mohammady, Samir, Ould Beinane, Sid Ahmed, Ould Ahmed Mahmoud, Sid Ahmed},
journal = {Mathematica Bohemica},
keywords = {semi-Hilbertian space; $A$-normal operator; $(n,m)$-normal operator; $(n,m)$-quasinormal operator},
language = {eng},
number = {2},
pages = {169-186},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators},
url = {http://eudml.org/doc/297917},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Al Mohammady, Samir
AU - Ould Beinane, Sid Ahmed
AU - Ould Ahmed Mahmoud, Sid Ahmed
TI - On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 169
EP - 186
AB - The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal {H}}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal {H}}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal {H}}$, induces a semi-norm $\Vert {\cdot }\Vert _A$. This makes ${\mathcal {H}}$ into a semi-Hilbertian space. An operator $T\in {\mathcal {B}}_A({\mathcal {H}})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$.
LA - eng
KW - semi-Hilbertian space; $A$-normal operator; $(n,m)$-normal operator; $(n,m)$-quasinormal operator
UR - http://eudml.org/doc/297917
ER -
References
top- Abood, E. H., Al-loz, M. A., On some generalization of normal operators on Hilbert space, Iraqi J. Sci. 56 (2015), 1786-1794. (2015)
- Abood, E. H., Al-loz, M. A., On some generalizations of -normal powers operators on Hilbert space, J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070. (2016)
- Alzuraiqi, S. A., Patel, A. B., On -normal operators, Gen. Math. Notes 1 (2010), 61-73. (2010) Zbl1225.47023
- Arias, M. L., Corach, G., Gonzalez, M. C., 10.1007/s00020-008-1613-6, Integral Equations Oper. Theory 62 (2008), 11-28. (2008) Zbl1181.46018MR2442900DOI10.1007/s00020-008-1613-6
- Arias, M. L., Corach, G., Gonzalez, M. C., 10.1016/j.laa.2007.09.031, Linear Algebra Appl. 428 (2008), 1460-1475. (2008) Zbl1140.46009MR2388631DOI10.1016/j.laa.2007.09.031
- Arias, M. L., Corach, G., Gonzalez, M. C., Lifting properties in operator ranges, Acta Sci. Math. 75 (2009), 635-653. (2009) Zbl1212.46048MR2590353
- Baklouti, H., Feki, K., Ahmed, O. A. M. Sid, 10.1080/03081087.2019.1593925, Linear Multilinear Algebra 68 (2020), 845-866. (2020) Zbl07178188MR4072783DOI10.1080/03081087.2019.1593925
- Bavithra, V., 10.22457/jmi.v11a16, J. Math. Informatics 11 (2017), 125-129. (2017) DOI10.22457/jmi.v11a16
- Benali, A., Ahmed, O. A. M. Sid, 10.1007/s13370-019-00690-3, Afr. Mat. 30 (2019), 903-920. (2019) Zbl07101153MR3993640DOI10.1007/s13370-019-00690-3
- Chellali, C., Benali, A., Class of -power-hyponormal operators in semi-Hilbertian space, Func. Anal. Approx. Comput. 11 (2019), 13-21. (2019) Zbl07158992MR4069434
- Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A., 10.2298/FIL1815441C, Filomat 32 (2018), 5441-5451. (2018) MR3898586DOI10.2298/FIL1815441C
- Chō, M., Načevska, B., 10.2298/FIL1814063C, Filomat 32 (2018), 5063-5069. (2018) MR3898553DOI10.2298/FIL1814063C
- Douglas, R. G., 10.1090/S0002-9939-1966-0203464-1, Proc. Am. Math. Soc. 17 (1966), 413-415. (1966) Zbl0146.12503MR0203464DOI10.1090/S0002-9939-1966-0203464-1
- Jah, S. H., 10.12732/ijpam.v93i1.6, Int. J. Pure Appl. Math. 93 (2014), 61-83. (2014) Zbl1331.47034DOI10.12732/ijpam.v93i1.6
- Jibril, A. A. S., On -power normal operators, Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. (2008) Zbl1182.47025MR2467186
- Mary, J. S. I., Vijaylakshmi, P., 10.5556/j.tkjm.46.2015.1665, Tamkang J. Math. 46 (2015), (151-165). (151) Zbl1323.47023MR3352354DOI10.5556/j.tkjm.46.2015.1665
- Saddi, A., -normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. (2012) Zbl1259.47022MR2878497
- Ahmed, O. A. M. Sid, Benali, A., Hyponormal and -quasi-hyponormal operators on semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. (2016) Zbl1348.47022MR3513410
- Ahmed, O. A. M. Sid, Ahmed, O. B. Sid, 10.7153/oam-2019-13-51, Oper. Matrices 13 (2019), 705-732. (2019) Zbl07142373MR4008507DOI10.7153/oam-2019-13-51
- Ahmed, O. B. Sid, Ahmed, O. A. M. Sid, 10.7153/oam-2020-14-13, Oper. Matrices 14 (2020), 159-174. (2020) Zbl07347976MR4080931DOI10.7153/oam-2020-14-13
- Suciu, L., Orthogonal decompositions induced by generalized contractions, Acta Sci. Math. 70 (2004), 751-765. (2004) Zbl1087.47010MR2107539
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.