On ( n , m ) - A -normal and ( n , m ) - A -quasinormal semi-Hilbertian space operators

Samir Al Mohammady; Sid Ahmed Ould Beinane; Sid Ahmed Ould Ahmed Mahmoud

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 2, page 169-186
  • ISSN: 0862-7959

Abstract

top
The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let A be a positive bounded operator on . The semi-inner product h k A : = A h k , h , k , induces a semi-norm · A . This makes into a semi-Hilbertian space. An operator T A ( ) is said to be ( n , m ) - A -normal if [ T n , ( T A ) m ] : = T n ( T A ) m - ( T A ) m T n = 0 for some positive integers n and m .

How to cite

top

Al Mohammady, Samir, Ould Beinane, Sid Ahmed, and Ould Ahmed Mahmoud, Sid Ahmed. "On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators." Mathematica Bohemica 147.2 (2022): 169-186. <http://eudml.org/doc/297917>.

@article{AlMohammady2022,
abstract = {The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let $\{\mathcal \{H\}\}$ be a Hilbert space and let $A$ be a positive bounded operator on $\{\mathcal \{H\}\}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in \{\mathcal \{H\}\}$, induces a semi-norm $\Vert \{\cdot \}\Vert _A$. This makes $\{\mathcal \{H\}\}$ into a semi-Hilbertian space. An operator $T\in \{\mathcal \{B\}\}_A(\{\mathcal \{H\}\})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^\{\sharp _A\})^m]:=T^n(T^\{\sharp _A\})^m-(T^\{\sharp _A\})^mT^n=0$ for some positive integers $n$ and $m$.},
author = {Al Mohammady, Samir, Ould Beinane, Sid Ahmed, Ould Ahmed Mahmoud, Sid Ahmed},
journal = {Mathematica Bohemica},
keywords = {semi-Hilbertian space; $A$-normal operator; $(n,m)$-normal operator; $(n,m)$-quasinormal operator},
language = {eng},
number = {2},
pages = {169-186},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators},
url = {http://eudml.org/doc/297917},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Al Mohammady, Samir
AU - Ould Beinane, Sid Ahmed
AU - Ould Ahmed Mahmoud, Sid Ahmed
TI - On $(n,m)$-$A$-normal and $(n,m)$-$A$-quasinormal semi-Hilbertian space operators
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 169
EP - 186
AB - The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let ${\mathcal {H}}$ be a Hilbert space and let $A$ be a positive bounded operator on ${\mathcal {H}}$. The semi-inner product $\langle h\mid k\rangle _A:=\langle Ah\mid k\rangle $, $h,k \in {\mathcal {H}}$, induces a semi-norm $\Vert {\cdot }\Vert _A$. This makes ${\mathcal {H}}$ into a semi-Hilbertian space. An operator $T\in {\mathcal {B}}_A({\mathcal {H}})$ is said to be $(n,m)$-$A$-normal if $[T^n,(T^{\sharp _A})^m]:=T^n(T^{\sharp _A})^m-(T^{\sharp _A})^mT^n=0$ for some positive integers $n$ and $m$.
LA - eng
KW - semi-Hilbertian space; $A$-normal operator; $(n,m)$-normal operator; $(n,m)$-quasinormal operator
UR - http://eudml.org/doc/297917
ER -

References

top
  1. Abood, E. H., Al-loz, M. A., On some generalization of normal operators on Hilbert space, Iraqi J. Sci. 56 (2015), 1786-1794. (2015) 
  2. Abood, E. H., Al-loz, M. A., On some generalizations of ( n , m ) -normal powers operators on Hilbert space, J. Progressive Res. Math. (JPRM) 7 (2016), 1063-1070. (2016) 
  3. Alzuraiqi, S. A., Patel, A. B., On n -normal operators, Gen. Math. Notes 1 (2010), 61-73. (2010) Zbl1225.47023
  4. Arias, M. L., Corach, G., Gonzalez, M. C., 10.1007/s00020-008-1613-6, Integral Equations Oper. Theory 62 (2008), 11-28. (2008) Zbl1181.46018MR2442900DOI10.1007/s00020-008-1613-6
  5. Arias, M. L., Corach, G., Gonzalez, M. C., 10.1016/j.laa.2007.09.031, Linear Algebra Appl. 428 (2008), 1460-1475. (2008) Zbl1140.46009MR2388631DOI10.1016/j.laa.2007.09.031
  6. Arias, M. L., Corach, G., Gonzalez, M. C., Lifting properties in operator ranges, Acta Sci. Math. 75 (2009), 635-653. (2009) Zbl1212.46048MR2590353
  7. Baklouti, H., Feki, K., Ahmed, O. A. M. Sid, 10.1080/03081087.2019.1593925, Linear Multilinear Algebra 68 (2020), 845-866. (2020) Zbl07178188MR4072783DOI10.1080/03081087.2019.1593925
  8. Bavithra, V., 10.22457/jmi.v11a16, J. Math. Informatics 11 (2017), 125-129. (2017) DOI10.22457/jmi.v11a16
  9. Benali, A., Ahmed, O. A. M. Sid, 10.1007/s13370-019-00690-3, Afr. Mat. 30 (2019), 903-920. (2019) Zbl07101153MR3993640DOI10.1007/s13370-019-00690-3
  10. Chellali, C., Benali, A., Class of ( A , n ) -power-hyponormal operators in semi-Hilbertian space, Func. Anal. Approx. Comput. 11 (2019), 13-21. (2019) Zbl07158992MR4069434
  11. Chō, M., Lee, J. E., Tanahashic, K., Uchiyamad, A., 10.2298/FIL1815441C, Filomat 32 (2018), 5441-5451. (2018) MR3898586DOI10.2298/FIL1815441C
  12. Chō, M., Načevska, B., 10.2298/FIL1814063C, Filomat 32 (2018), 5063-5069. (2018) MR3898553DOI10.2298/FIL1814063C
  13. Douglas, R. G., 10.1090/S0002-9939-1966-0203464-1, Proc. Am. Math. Soc. 17 (1966), 413-415. (1966) Zbl0146.12503MR0203464DOI10.1090/S0002-9939-1966-0203464-1
  14. Jah, S. H., 10.12732/ijpam.v93i1.6, Int. J. Pure Appl. Math. 93 (2014), 61-83. (2014) Zbl1331.47034DOI10.12732/ijpam.v93i1.6
  15. Jibril, A. A. S., On n -power normal operators, Arab. J. Sci. Eng., Sect. A, Sci. 33 (2008), 247-251. (2008) Zbl1182.47025MR2467186
  16. Mary, J. S. I., Vijaylakshmi, P., 10.5556/j.tkjm.46.2015.1665, Tamkang J. Math. 46 (2015), (151-165). (151) Zbl1323.47023MR3352354DOI10.5556/j.tkjm.46.2015.1665
  17. Saddi, A., A -normal operators in semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 9 (2012), Article ID 5, 12 pages. (2012) Zbl1259.47022MR2878497
  18. Ahmed, O. A. M. Sid, Benali, A., Hyponormal and k -quasi-hyponormal operators on semi-Hilbertian spaces, Aust. J. Math. Anal. Appl. 13 (2016), Article ID 7, 22 pages. (2016) Zbl1348.47022MR3513410
  19. Ahmed, O. A. M. Sid, Ahmed, O. B. Sid, 10.7153/oam-2019-13-51, Oper. Matrices 13 (2019), 705-732. (2019) Zbl07142373MR4008507DOI10.7153/oam-2019-13-51
  20. Ahmed, O. B. Sid, Ahmed, O. A. M. Sid, 10.7153/oam-2020-14-13, Oper. Matrices 14 (2020), 159-174. (2020) Zbl07347976MR4080931DOI10.7153/oam-2020-14-13
  21. Suciu, L., Orthogonal decompositions induced by generalized contractions, Acta Sci. Math. 70 (2004), 751-765. (2004) Zbl1087.47010MR2107539

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.