On generalized square-full numbers in an arithmetic progression
Angkana Sripayap; Pattira Ruengsinsub; Teerapat Srichan
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 149-163
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSripayap, Angkana, Ruengsinsub, Pattira, and Srichan, Teerapat. "On generalized square-full numbers in an arithmetic progression." Czechoslovak Mathematical Journal 72.1 (2022): 149-163. <http://eudml.org/doc/297949>.
@article{Sripayap2022,
abstract = {Let $a$ and $b\in \mathbb \{N\}$. Denote by $R_\{a,b\}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^\{\alpha _1\}p_2^\{\alpha _2\}\cdots p_r^\{\alpha _r\}$ has all exponents $\alpha _i$$(1\le i\le r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb \{N\}_0:=\mathbb \{N\}\cup \lbrace 0\rbrace $. All integers in $R_\{a,b\}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.},
author = {Sripayap, Angkana, Ruengsinsub, Pattira, Srichan, Teerapat},
journal = {Czechoslovak Mathematical Journal},
keywords = {arithmetic progression; character sum; exponent pair method; square-full number},
language = {eng},
number = {1},
pages = {149-163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized square-full numbers in an arithmetic progression},
url = {http://eudml.org/doc/297949},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Sripayap, Angkana
AU - Ruengsinsub, Pattira
AU - Srichan, Teerapat
TI - On generalized square-full numbers in an arithmetic progression
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 149
EP - 163
AB - Let $a$ and $b\in \mathbb {N}$. Denote by $R_{a,b}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^{\alpha _1}p_2^{\alpha _2}\cdots p_r^{\alpha _r}$ has all exponents $\alpha _i$$(1\le i\le r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb {N}_0:=\mathbb {N}\cup \lbrace 0\rbrace $. All integers in $R_{a,b}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.
LA - eng
KW - arithmetic progression; character sum; exponent pair method; square-full number
UR - http://eudml.org/doc/297949
ER -
References
top- Bateman, P. T., Grosswald, E., 10.1215/ijm/1255380836, Ill. J. Math. 2 (1958), 88-98. (1958) Zbl0079.07104MR0095804DOI10.1215/ijm/1255380836
- Chan, T. H., 10.1016/j.jnt.2014.12.019, J. Number Theory 152 (2015), 90-104. (2015) Zbl1398.11124MR3319056DOI10.1016/j.jnt.2014.12.019
- Chan, T. H., Tsang, K. M., 10.1142/S1793042113500048, Int. J. Number Theory 9 (2013), 885-901. (2013) Zbl1290.11130MR3060865DOI10.1142/S1793042113500048
- Cohen, E., Arithmetical notes. II: An estimate of Erdős and Szekeres, Scripta Math. 26 (1963), 353-356. (1963) Zbl0122.04901MR0162770
- Erdős, P., Szekeres, S., Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Szeged 7 (1934), 95-102 German 9999JFM99999 60.0893.02. (1934)
- Liu, H., Zhang, T., 10.1007/s00013-013-0525-0, Arch. Math. 101 (2013), 53-64. (2013) Zbl1333.11094MR3073665DOI10.1007/s00013-013-0525-0
- Munsch, M., 10.1007/s00013-014-0658-9, Arch. Math. 102 (2014), 555-563. (2014) Zbl1297.11097MR3227477DOI10.1007/s00013-014-0658-9
- Richert, H.-E., 10.1007/BF01215034, Math. Z. 56 (1952), 21-32 German. (1952) Zbl0046.25002MR0050577DOI10.1007/BF01215034
- Richert, H.-E., 10.1007/BF01174132, Math. Z. 58 (1953), 71-84 German. (1953) Zbl0050.02302MR0054594DOI10.1007/BF01174132
- Srichan, T., Square-full and cube-full numbers in arithmetic progressions, Šiauliai Math. Semin. 8 (2013), 223-248. (2013) Zbl1318.11120MR3265055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.