On generalized square-full numbers in an arithmetic progression

Angkana Sripayap; Pattira Ruengsinsub; Teerapat Srichan

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 1, page 149-163
  • ISSN: 0011-4642

Abstract

top
Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.

How to cite

top

Sripayap, Angkana, Ruengsinsub, Pattira, and Srichan, Teerapat. "On generalized square-full numbers in an arithmetic progression." Czechoslovak Mathematical Journal 72.1 (2022): 149-163. <http://eudml.org/doc/297949>.

@article{Sripayap2022,
abstract = {Let $a$ and $b\in \mathbb \{N\}$. Denote by $R_\{a,b\}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^\{\alpha _1\}p_2^\{\alpha _2\}\cdots p_r^\{\alpha _r\}$ has all exponents $\alpha _i$$(1\le i\le r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb \{N\}_0:=\mathbb \{N\}\cup \lbrace 0\rbrace $. All integers in $R_\{a,b\}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.},
author = {Sripayap, Angkana, Ruengsinsub, Pattira, Srichan, Teerapat},
journal = {Czechoslovak Mathematical Journal},
keywords = {arithmetic progression; character sum; exponent pair method; square-full number},
language = {eng},
number = {1},
pages = {149-163},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On generalized square-full numbers in an arithmetic progression},
url = {http://eudml.org/doc/297949},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Sripayap, Angkana
AU - Ruengsinsub, Pattira
AU - Srichan, Teerapat
TI - On generalized square-full numbers in an arithmetic progression
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 149
EP - 163
AB - Let $a$ and $b\in \mathbb {N}$. Denote by $R_{a,b}$ the set of all integers $n>1$ whose canonical prime representation $n=p_1^{\alpha _1}p_2^{\alpha _2}\cdots p_r^{\alpha _r}$ has all exponents $\alpha _i$$(1\le i\le r)$ being a multiple of $a$ or belonging to the arithmetic progression $at+b$, $t\in \mathbb {N}_0:=\mathbb {N}\cup \lbrace 0\rbrace $. All integers in $R_{a,b}$ are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given.
LA - eng
KW - arithmetic progression; character sum; exponent pair method; square-full number
UR - http://eudml.org/doc/297949
ER -

References

top
  1. Bateman, P. T., Grosswald, E., 10.1215/ijm/1255380836, Ill. J. Math. 2 (1958), 88-98. (1958) Zbl0079.07104MR0095804DOI10.1215/ijm/1255380836
  2. Chan, T. H., 10.1016/j.jnt.2014.12.019, J. Number Theory 152 (2015), 90-104. (2015) Zbl1398.11124MR3319056DOI10.1016/j.jnt.2014.12.019
  3. Chan, T. H., Tsang, K. M., 10.1142/S1793042113500048, Int. J. Number Theory 9 (2013), 885-901. (2013) Zbl1290.11130MR3060865DOI10.1142/S1793042113500048
  4. Cohen, E., Arithmetical notes. II: An estimate of Erdős and Szekeres, Scripta Math. 26 (1963), 353-356. (1963) Zbl0122.04901MR0162770
  5. Erdős, P., Szekeres, S., Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Szeged 7 (1934), 95-102 German 9999JFM99999 60.0893.02. (1934) 
  6. Liu, H., Zhang, T., 10.1007/s00013-013-0525-0, Arch. Math. 101 (2013), 53-64. (2013) Zbl1333.11094MR3073665DOI10.1007/s00013-013-0525-0
  7. Munsch, M., 10.1007/s00013-014-0658-9, Arch. Math. 102 (2014), 555-563. (2014) Zbl1297.11097MR3227477DOI10.1007/s00013-014-0658-9
  8. Richert, H.-E., 10.1007/BF01215034, Math. Z. 56 (1952), 21-32 German. (1952) Zbl0046.25002MR0050577DOI10.1007/BF01215034
  9. Richert, H.-E., 10.1007/BF01174132, Math. Z. 58 (1953), 71-84 German. (1953) Zbl0050.02302MR0054594DOI10.1007/BF01174132
  10. Srichan, T., Square-full and cube-full numbers in arithmetic progressions, Šiauliai Math. Semin. 8 (2013), 223-248. (2013) Zbl1318.11120MR3265055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.