Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces

Abdelali Sabri; Ahmed Jamea; Hamad Talibi Alaoui

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 113-129
  • ISSN: 0862-7959

Abstract

top
In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.

How to cite

top

Sabri, Abdelali, Jamea, Ahmed, and Talibi Alaoui, Hamad. "Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces." Mathematica Bohemica 147.1 (2022): 113-129. <http://eudml.org/doc/297975>.

@article{Sabri2022,
abstract = {In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.},
author = {Sabri, Abdelali, Jamea, Ahmed, Talibi Alaoui, Hamad},
journal = {Mathematica Bohemica},
language = {eng},
number = {1},
pages = {113-129},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces},
url = {http://eudml.org/doc/297975},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Sabri, Abdelali
AU - Jamea, Ahmed
AU - Talibi Alaoui, Hamad
TI - Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 113
EP - 129
AB - In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.
LA - eng
UR - http://eudml.org/doc/297975
ER -

References

top
  1. Abassi, A., Hachimi, A. El, Jamea, A., Entropy solutions to nonlinear Neumann problems with $L^1$-data, Int. J. Math. Stat. 2 (2008), 4-17. (2008) Zbl1137.35033MR2348474
  2. Cavalheiro, A. C., 10.5269/bspm.v26i1-2.7415, Bol. Soc. Parana. Mat. (3) 26 (2008), 117-132. (2008) Zbl1185.46024MR2505460DOI10.5269/bspm.v26i1-2.7415
  3. Cavalheiro, A. C., 10.1515/jaa-2013-0003, J. Appl. Anal. 19 (2013), 41-54. (2013) Zbl1278.35086MR3069764DOI10.1515/jaa-2013-0003
  4. Cavalheiro, A. C., Existence results for Dirichlet problems with degenerated $p$-Laplacian and $p$-biharmonic operators, Appl. Math. E-Notes 13 (2013), 234-242. (2013) Zbl1291.35053MR3159293
  5. Cavalheiro, A. C., 10.1007/s12591-014-0214-x, Differ. Equ. Dyn. Syst. 24 (2016), 305-317. (2016) Zbl1361.35065MR3515045DOI10.1007/s12591-014-0214-x
  6. Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
  7. Diaz, J. I., Thelin, F. De, 10.1137/S0036141091217731, SIAM J. Math. Anal. 25 (1994), 1085-1111. (1994) Zbl0808.35066MR1278892DOI10.1137/S0036141091217731
  8. Drábek, P., 10.21136/MB.1995.126227, Math. Bohem. 120 (1995), 169-195. (1995) Zbl0839.35049MR1357600DOI10.21136/MB.1995.126227
  9. Drábek, P., Kufner, A., Mustonen, V., 10.1017/S0004972700032184, Bull. Aust. Math. Soc. 58 (1998), 213-221. (1998) Zbl0913.35051MR1642031DOI10.1017/S0004972700032184
  10. Hästö, P. A., The $p(x)$-Laplacian and applications, J. Anal. 15 (2007), 53-62. (2007) Zbl1185.46020MR2554092
  11. Kilpeläinen, J. Heinonen,T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Clarendon Press, Oxford (1993). (1993) Zbl0780.31001MR1207810
  12. Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  13. užička, M. R\accent23, 10.1007/BFb0104029, Lectures Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
  14. Turesson, B. O., 10.1007/BFb0103908, Lecture Notes in Mathematics 1736. Springer, Berlin (2000). (2000) Zbl0949.31006MR1774162DOI10.1007/BFb0103908

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.