Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces
Abdelali Sabri; Ahmed Jamea; Hamad Talibi Alaoui
Mathematica Bohemica (2022)
- Volume: 147, Issue: 1, page 113-129
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSabri, Abdelali, Jamea, Ahmed, and Talibi Alaoui, Hamad. "Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces." Mathematica Bohemica 147.1 (2022): 113-129. <http://eudml.org/doc/297975>.
@article{Sabri2022,
abstract = {In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.},
author = {Sabri, Abdelali, Jamea, Ahmed, Talibi Alaoui, Hamad},
journal = {Mathematica Bohemica},
language = {eng},
number = {1},
pages = {113-129},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces},
url = {http://eudml.org/doc/297975},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Sabri, Abdelali
AU - Jamea, Ahmed
AU - Talibi Alaoui, Hamad
TI - Weak solution for nonlinear degenerate elliptic problem with Dirichlet-type boundary condition in weighted Sobolev spaces
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 113
EP - 129
AB - In the present paper, we prove the existence and uniqueness of weak solution to a class of nonlinear degenerate elliptic $p$-Laplacian problem with Dirichlet-type boundary condition, the main tool used here is the variational method combined with the theory of weighted Sobolev spaces.
LA - eng
UR - http://eudml.org/doc/297975
ER -
References
top- Abassi, A., Hachimi, A. El, Jamea, A., Entropy solutions to nonlinear Neumann problems with $L^1$-data, Int. J. Math. Stat. 2 (2008), 4-17. (2008) Zbl1137.35033MR2348474
- Cavalheiro, A. C., 10.5269/bspm.v26i1-2.7415, Bol. Soc. Parana. Mat. (3) 26 (2008), 117-132. (2008) Zbl1185.46024MR2505460DOI10.5269/bspm.v26i1-2.7415
- Cavalheiro, A. C., 10.1515/jaa-2013-0003, J. Appl. Anal. 19 (2013), 41-54. (2013) Zbl1278.35086MR3069764DOI10.1515/jaa-2013-0003
- Cavalheiro, A. C., Existence results for Dirichlet problems with degenerated $p$-Laplacian and $p$-biharmonic operators, Appl. Math. E-Notes 13 (2013), 234-242. (2013) Zbl1291.35053MR3159293
- Cavalheiro, A. C., 10.1007/s12591-014-0214-x, Differ. Equ. Dyn. Syst. 24 (2016), 305-317. (2016) Zbl1361.35065MR3515045DOI10.1007/s12591-014-0214-x
- Chen, Y., Levine, S., Rao, M., 10.1137/050624522, SIAM J. Appl. Math. 66 (2006), 1383-1406. (2006) Zbl1102.49010MR2246061DOI10.1137/050624522
- Diaz, J. I., Thelin, F. De, 10.1137/S0036141091217731, SIAM J. Math. Anal. 25 (1994), 1085-1111. (1994) Zbl0808.35066MR1278892DOI10.1137/S0036141091217731
- Drábek, P., 10.21136/MB.1995.126227, Math. Bohem. 120 (1995), 169-195. (1995) Zbl0839.35049MR1357600DOI10.21136/MB.1995.126227
- Drábek, P., Kufner, A., Mustonen, V., 10.1017/S0004972700032184, Bull. Aust. Math. Soc. 58 (1998), 213-221. (1998) Zbl0913.35051MR1642031DOI10.1017/S0004972700032184
- Hästö, P. A., The $p(x)$-Laplacian and applications, J. Anal. 15 (2007), 53-62. (2007) Zbl1185.46020MR2554092
- Kilpeläinen, J. Heinonen,T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Clarendon Press, Oxford (1993). (1993) Zbl0780.31001MR1207810
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- užička, M. R\accent23, 10.1007/BFb0104029, Lectures Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
- Turesson, B. O., 10.1007/BFb0103908, Lecture Notes in Mathematics 1736. Springer, Berlin (2000). (2000) Zbl0949.31006MR1774162DOI10.1007/BFb0103908
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.