The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems

Pavel Drábek

Mathematica Bohemica (1995)

  • Volume: 120, Issue: 2, page 169-195
  • ISSN: 0862-7959

Abstract

top
We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem - div ( a ( x , u ) | | p - 2 u ) = λ b ( x , u ) | u | p - 2 u in Ω , u = 0 on Ω , where Ω is a bounded domain, p > 1 is a real number and a ( x , u ) , b ( x , u ) satisfy appropriate growth conditions. Moreover, the coefficient a ( x , u ) contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in L ( Ω ) . The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.

How to cite

top

Drábek, Pavel. "The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems." Mathematica Bohemica 120.2 (1995): 169-195. <http://eudml.org/doc/247813>.

@article{Drábek1995,
abstract = {We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem \begin\{align\}-\operatorname\{div\}(a(x,u)||^\{p-2\}\nabla u) = &\lambda b(x,u)|u|^\{p-2\}u \quad \text\{ in \} \Omega , u = &0 \hspace\{56.9055pt\}\text\{ on \} \partial \Omega , \end\{align\} where $\Omega $ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty (\Omega )$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.},
author = {Drábek, Pavel},
journal = {Mathematica Bohemica},
keywords = {boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem; degenerated quasilinear partial differential equations; weak solutions; eigenvalue problems; boundedness of the solution; boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem},
language = {eng},
number = {2},
pages = {169-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems},
url = {http://eudml.org/doc/247813},
volume = {120},
year = {1995},
}

TY - JOUR
AU - Drábek, Pavel
TI - The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 2
SP - 169
EP - 195
AB - We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem \begin{align}-\operatorname{div}(a(x,u)||^{p-2}\nabla u) = &\lambda b(x,u)|u|^{p-2}u \quad \text{ in } \Omega , u = &0 \hspace{56.9055pt}\text{ on } \partial \Omega , \end{align} where $\Omega $ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty (\Omega )$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.
LA - eng
KW - boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem; degenerated quasilinear partial differential equations; weak solutions; eigenvalue problems; boundedness of the solution; boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem
UR - http://eudml.org/doc/247813
ER -

References

top
  1. R. A. Adams, Sobolev Spaces, Academic Press, Inc., New York, 1975. (1975) Zbl0314.46030MR0450957
  2. A. Anane, Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728. (1987) Zbl0633.35061MR0920052
  3. G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, Ann. Fac. des Sc. de Toulouse IX (1988), no. 1, 65-75. (1988) Zbl0621.35068MR0971814
  4. T. Bhattacharya, Radial symmetry of the first eigenfunction for the p-Laplacian in the ball, Proc. Amer. Math Society 104 (1988), 169-174. (1988) Zbl0673.35083MR0958061
  5. L. Boccardo, Positive eigenfunctions for a class of quasi-linear operators, Bollettino U. M. I. (5) 18-B (1981), 951-959. (1981) Zbl0496.47051MR0641748
  6. P. Drábek M. Kučera, Generalized eigenvalue and bifurcations of second order boundary value problems with jumping nonlinearities, Bull. Austral. Math. Society 37(1988), 179-187. (1988) MR0930787
  7. P. Drábek A. Kufner F. Nicolosi, 10.1006/jdeq.1994.1053, J. Differential Equations 109 (1994), 325-347. (1994) MR1273306DOI10.1006/jdeq.1994.1053
  8. S. Fučík A. Kufner, Nonlinear Differential Equations, Elsevier, The Netherlands, 1980. (1980) MR0558764
  9. J. García Azorero I. Peral Alonso, Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389-1430. (1987) MR0912211
  10. A. Kufner O. John S. Fučík, Function Spaces, Academia, Prague, 1977. (1977) MR0482102
  11. A. Kufner A. M. Sändig, Some Applications of Weighted Sobolev Spaces, Teubner, Band 100, Leipzig, 1987. (1987) MR0926688
  12. P. Lindqvist, On the equation d i v ( | u | p - 2 u ) + λ | u | p - 2 u = 0 , Proc. Amer. Math. Society 109 (1990), 157-164. (1990) Zbl0714.35029MR1007505
  13. M. K. V. Murthy G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Annali di Matematica (4) 80 (1968), 1-122. (1968) MR0249828
  14. M. Otani T. Teshima, The first eigenvalue of some quasilinear elliptic equations, Proc. Japan Academy 64, ser. A (1988), 8-10. (1988) MR0953752
  15. M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, Inc. San Francisco, 1964. (1964) Zbl0122.35501MR0176364

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.