The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
Mathematica Bohemica (1995)
- Volume: 120, Issue: 2, page 169-195
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDrábek, Pavel. "The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems." Mathematica Bohemica 120.2 (1995): 169-195. <http://eudml.org/doc/247813>.
@article{Drábek1995,
abstract = {We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem
\begin\{align\}-\operatorname\{div\}(a(x,u)||^\{p-2\}\nabla u) = &\lambda b(x,u)|u|^\{p-2\}u \quad \text\{ in \} \Omega ,
u = &0 \hspace\{56.9055pt\}\text\{ on \} \partial \Omega , \end\{align\}
where $\Omega $ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty (\Omega )$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.},
author = {Drábek, Pavel},
journal = {Mathematica Bohemica},
keywords = {boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem; degenerated quasilinear partial differential equations; weak solutions; eigenvalue problems; boundedness of the solution; boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem},
language = {eng},
number = {2},
pages = {169-195},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems},
url = {http://eudml.org/doc/247813},
volume = {120},
year = {1995},
}
TY - JOUR
AU - Drábek, Pavel
TI - The least eigenvalues of nonhomogeneous degenerated quasilinear eigenvalue problems
JO - Mathematica Bohemica
PY - 1995
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 120
IS - 2
SP - 169
EP - 195
AB - We prove the existence of the least positive eigenvalue with a corresponding nonnegative eigenfunction of the quasilinear eigenvalue problem
\begin{align}-\operatorname{div}(a(x,u)||^{p-2}\nabla u) = &\lambda b(x,u)|u|^{p-2}u \quad \text{ in } \Omega ,
u = &0 \hspace{56.9055pt}\text{ on } \partial \Omega , \end{align}
where $\Omega $ is a bounded domain, $p>1$ is a real number and $a(x,u)$, $b(x,u)$ satisfy appropriate growth conditions. Moreover, the coefficient $a(x,u)$ contains a degeneration or a singularity. We work in a suitable weighted Sobolev space and prove the boundedness of the eigenfunction in $L^\infty (\Omega )$. The main tool is the investigation of the associated homogeneous eigenvalue problem and an application of the Schauder fixed point theorem.
LA - eng
KW - boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem; degenerated quasilinear partial differential equations; weak solutions; eigenvalue problems; boundedness of the solution; boundedness of eigenfunction; weighted Sobolev space; Schauder fixed point theorem
UR - http://eudml.org/doc/247813
ER -
References
top- R. A. Adams, Sobolev Spaces, Academic Press, Inc., New York, 1975. (1975) Zbl0314.46030MR0450957
- A. Anane, Simplicité et isolation de la premiére valeur propre du p-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), 725-728. (1987) Zbl0633.35061MR0920052
- G. Barles, Remarks on uniqueness results of the first eigenvalue of the p-Laplacian, Ann. Fac. des Sc. de Toulouse IX (1988), no. 1, 65-75. (1988) Zbl0621.35068MR0971814
- T. Bhattacharya, Radial symmetry of the first eigenfunction for the p-Laplacian in the ball, Proc. Amer. Math Society 104 (1988), 169-174. (1988) Zbl0673.35083MR0958061
- L. Boccardo, Positive eigenfunctions for a class of quasi-linear operators, Bollettino U. M. I. (5) 18-B (1981), 951-959. (1981) Zbl0496.47051MR0641748
- P. Drábek M. Kučera, Generalized eigenvalue and bifurcations of second order boundary value problems with jumping nonlinearities, Bull. Austral. Math. Society 37(1988), 179-187. (1988) MR0930787
- P. Drábek A. Kufner F. Nicolosi, 10.1006/jdeq.1994.1053, J. Differential Equations 109 (1994), 325-347. (1994) MR1273306DOI10.1006/jdeq.1994.1053
- S. Fučík A. Kufner, Nonlinear Differential Equations, Elsevier, The Netherlands, 1980. (1980) MR0558764
- J. García Azorero I. Peral Alonso, Existence and non-uniqueness for the p-Laplacian: Non-linear eigenvalues, Comm. Partial Differential Equations 12 (1987), 1389-1430. (1987) MR0912211
- A. Kufner O. John S. Fučík, Function Spaces, Academia, Prague, 1977. (1977) MR0482102
- A. Kufner A. M. Sändig, Some Applications of Weighted Sobolev Spaces, Teubner, Band 100, Leipzig, 1987. (1987) MR0926688
- P. Lindqvist, On the equation , Proc. Amer. Math. Society 109 (1990), 157-164. (1990) Zbl0714.35029MR1007505
- M. K. V. Murthy G. Stampacchia, Boundary value problems for some degenerate elliptic operators, Annali di Matematica (4) 80 (1968), 1-122. (1968) MR0249828
- M. Otani T. Teshima, The first eigenvalue of some quasilinear elliptic equations, Proc. Japan Academy 64, ser. A (1988), 8-10. (1988) MR0953752
- M. M. Vainberg, Variational Methods for the Study of Nonlinear Operators, Holden-Day, Inc. San Francisco, 1964. (1964) Zbl0122.35501MR0176364
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.