On the convergence theory of double -weak splittings of type II
Vaibhav Shekhar; Nachiketa Mishra; Debasisha Mishra
Applications of Mathematics (2022)
- Volume: 67, Issue: 3, page 341-369
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topShekhar, Vaibhav, Mishra, Nachiketa, and Mishra, Debasisha. "On the convergence theory of double $K$-weak splittings of type II." Applications of Mathematics 67.3 (2022): 341-369. <http://eudml.org/doc/297978>.
@article{Shekhar2022,
abstract = {Recently, Wang (2017) has introduced the $K$-nonnegative double splitting using the notion of matrices that leave a cone $K\subseteq \mathbb \{R\}^\{n\}$ invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for $K$-weak regular and $K$-nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory for these sub-classes of matrices. We then obtain the comparison results for two double splittings of a $K$-monotone matrix. Most of these results are completely new even for $K= \mathbb \{R\}^\{n\}_+$. The convergence behavior is discussed by performing numerical experiments for different matrices derived from the discretized Poisson equation.},
author = {Shekhar, Vaibhav, Mishra, Nachiketa, Mishra, Debasisha},
journal = {Applications of Mathematics},
keywords = {linear system; iterative method; $K$-nonnegativity; double splitting; convergence theorem; comparison theorem},
language = {eng},
number = {3},
pages = {341-369},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the convergence theory of double $K$-weak splittings of type II},
url = {http://eudml.org/doc/297978},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Shekhar, Vaibhav
AU - Mishra, Nachiketa
AU - Mishra, Debasisha
TI - On the convergence theory of double $K$-weak splittings of type II
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 341
EP - 369
AB - Recently, Wang (2017) has introduced the $K$-nonnegative double splitting using the notion of matrices that leave a cone $K\subseteq \mathbb {R}^{n}$ invariant and studied its convergence theory by generalizing the corresponding results for the nonnegative double splitting by Song and Song (2011). However, the convergence theory for $K$-weak regular and $K$-nonnegative double splittings of type II is not yet studied. In this article, we first introduce this class of splittings and then discuss the convergence theory for these sub-classes of matrices. We then obtain the comparison results for two double splittings of a $K$-monotone matrix. Most of these results are completely new even for $K= \mathbb {R}^{n}_+$. The convergence behavior is discussed by performing numerical experiments for different matrices derived from the discretized Poisson equation.
LA - eng
KW - linear system; iterative method; $K$-nonnegativity; double splitting; convergence theorem; comparison theorem
UR - http://eudml.org/doc/297978
ER -
References
top- Berman, A., Plemmons, R. J., 10.1137/1.9781611971262, Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). (1994) Zbl0815.15016MR1298430DOI10.1137/1.9781611971262
- Climent, J.-J., Perea, C., 10.1016/S0024-3795(97)10065-9, Linear Algebra Appl. 275-276 (1998), 77-106. (1998) Zbl0936.65063MR1628383DOI10.1016/S0024-3795(97)10065-9
- Climent, J.-J., Perea, C., 10.13001/1081-3810.1029, Electron. J. Linear Algebra 5 (1999), 24-38. (1999) Zbl0919.65023MR1668923DOI10.13001/1081-3810.1029
- Climent, J.-J., Perea, C., 10.1016/S0024-3795(99)00158-5, Linear Algebra Appl. 302-303 (1999), 355-366. (1999) Zbl0948.65030MR1733540DOI10.1016/S0024-3795(99)00158-5
- Collatz, L., Functional Analysis and Numerical Mathematics, Academic Press, New York (1966). (1966) Zbl0148.39002MR0205126
- Golub, G. H., Loan, C. F. Van, Matrix Computations, The John Hopkins University Press, Baltimore (1996). (1996) Zbl0865.65009MR1417720
- Golub, G. H., Varga, R. S., 10.1007/BF01386013, Numer. Math. 3 (1961), 147-156. (1961) Zbl0099.10903MR145678DOI10.1007/BF01386013
- Hou, G., 10.1016/j.amc.2014.06.101, Appl. Math. Comput. 244 (2014), 382-389. (2014) Zbl1335.15015MR3250585DOI10.1016/j.amc.2014.06.101
- Marek, I., Szyld, D. B., 10.1007/BF01385632, Numer. Math. 58 (1990), 389-397. (1990) Zbl0694.65023MR1077585DOI10.1007/BF01385632
- Miao, S.-X., Zheng, B., 10.1007/s10092-009-0011-z, Calcolo 46 (2009), 261-266. (2009) Zbl1185.65058MR2563785DOI10.1007/s10092-009-0011-z
- Nandi, A. K., Shekhar, V., Mishra, N., Mishra, D., 10.1016/j.camwa.2021.02.015, Comput. Math. Appl. 89 (2021), 87-98. (2021) Zbl7336184MR4233331DOI10.1016/j.camwa.2021.02.015
- Saad, Y., 10.1137/1.9780898718003, SIAM, Philadelphia (2003). (2003) Zbl1031.65046MR1990645DOI10.1137/1.9780898718003
- Shekhar, V., Giri, C. K., Mishra, D., 10.1080/03081087.2020.1795057, (to appear) in Linear Multilinear Algebra. DOI10.1080/03081087.2020.1795057
- Shen, S.-Q., Huang, T.-Z., 10.1016/j.camwa.2006.02.006, Comput. Math. Appl. 51 (2006), 1751-1760. (2006) Zbl1134.65341MR2245703DOI10.1016/j.camwa.2006.02.006
- Shen, S.-Q., Huang, T.-Z., Shao, J.-L., 10.1007/s10092-007-0132-1, Calcolo 44 (2007), 127-135. (2007) Zbl1150.65008MR2352718DOI10.1007/s10092-007-0132-1
- Song, Y., 10.1007/s002110100333, Numer. Math. 92 (2002), 563-591. (2002) Zbl1012.65028MR1930390DOI10.1007/s002110100333
- Song, J., Song, Y., 10.1007/s10092-010-0037-2, Calcolo 48 (2011), 245-260. (2011) Zbl1232.65056MR2827007DOI10.1007/s10092-010-0037-2
- Wang, C., 10.1007/s10092-017-0230-7, Calcolo 54 (2017), 1293-1303. (2017) Zbl1385.65028MR3735816DOI10.1007/s10092-017-0230-7
- Woźnicki, Z. I., 10.1137/0614005, SIAM J. Matrix Anal. Appl. 14 (1993), 59-73. (1993) Zbl0767.65025MR1199544DOI10.1137/0614005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.