A note on free direct summands.
Let and be commutative rings with identity. An --biring is an -algebra together with a lift of the functor from -algebras to sets to a functor from -algebras to -algebras. An -plethory is a monoid object in the monoidal category, equipped with the composition product, of --birings. The polynomial ring is an initial object in the category of such structures. The -algebra has such a structure if is a domain such that the natural -algebra homomorphism is an isomorphism for...
Si considerano le estensioni chiuse di un -modulo mediante un -modulo nel caso in cui sia un anello semi-artiniano, cioè un anello con la proprietà che per ogni quoziente sia soc . Tali estensioni sono caratterizzate dal fatto che deve essere un sottomodulo semi-puro di .
Let be the polynomial ring over a ring with unity. A polynomial is referred to as a left annihilating content polynomial (left ACP) if there exist an element and a polynomial such that and is not a right zero-divisor polynomial in . A ring is referred to as left EM if each polynomial is a left ACP. We observe the structure of left EM rings with various properties, and study the relationships between the one-sided EM condition and other standard ring theoretic conditions. Moreover,...
The so-called “invariance under twisting” for twisted tensor products of algebras is a result stating that, if we start with a twisted tensor product, under certain circumstances we can “deform” the twisting map and we obtain a new twisted tensor product, isomorphic to the given one. It was proved before that a number of independent and previously unrelated results from Hopf algebra theory are particular cases of this theorem. In this article we show that some more results from literature are particular...
We generalize the notion of a coarse sequential convergence compatible with an algebraic structure to a coarse one in a given class of convergences. In particular, we investigate coarseness in the class of all compatible convergences (with unique limits) the restriction of which to a given subset is fixed. We characterize such convergences and study relative coarseness in connection with extensions and completions of groups and rings. E.g., we show that: (i) each relatively coarse dense group precompletion...
We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.