On the direct product of uninorms on bounded lattices

Emel Aşıcı; Radko Mesiar

Kybernetika (2021)

  • Volume: 57, Issue: 6, page 989-1004
  • ISSN: 0023-5954

Abstract

top
In this paper, we study on the direct product of uninorms on bounded lattices. Also, we define an order induced by uninorms which are a direct product of two uninorms on bounded lattices and properties of introduced order are deeply investigated. Moreover, we obtain some results concerning orders induced by uninorms acting on the unit interval [ 0 , 1 ] .

How to cite

top

Aşıcı, Emel, and Mesiar, Radko. "On the direct product of uninorms on bounded lattices." Kybernetika 57.6 (2021): 989-1004. <http://eudml.org/doc/298047>.

@article{Aşıcı2021,
abstract = {In this paper, we study on the direct product of uninorms on bounded lattices. Also, we define an order induced by uninorms which are a direct product of two uninorms on bounded lattices and properties of introduced order are deeply investigated. Moreover, we obtain some results concerning orders induced by uninorms acting on the unit interval $ [0,1] $.},
author = {Aşıcı, Emel, Mesiar, Radko},
journal = {Kybernetika},
keywords = {uninorm; direct product; partial order},
language = {eng},
number = {6},
pages = {989-1004},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the direct product of uninorms on bounded lattices},
url = {http://eudml.org/doc/298047},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Aşıcı, Emel
AU - Mesiar, Radko
TI - On the direct product of uninorms on bounded lattices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 6
SP - 989
EP - 1004
AB - In this paper, we study on the direct product of uninorms on bounded lattices. Also, we define an order induced by uninorms which are a direct product of two uninorms on bounded lattices and properties of introduced order are deeply investigated. Moreover, we obtain some results concerning orders induced by uninorms acting on the unit interval $ [0,1] $.
LA - eng
KW - uninorm; direct product; partial order
UR - http://eudml.org/doc/298047
ER -

References

top
  1. Aşıcı, E., , Fuzzy Sets Syst. 325 (2017), 35-46. MR3690353DOI
  2. Aşıcı, E., , Hacet. J. Math. Stat. 48 (2019), 2, 439-450. MR3974553DOI
  3. Aşıcı, E., , Iran. J. Fuzzy Syst. 18 (2021), 81-98. MR4284673DOI
  4. Aşıcı, E., Karaçal, F., , Inform. Sci. 267 (2014), 323-333. MR3177320DOI
  5. Aşıcı, E., Mesiar, R., , Iran. J. Fuzzy Syst. 17 (2020), 121-138. MR4155854DOI
  6. Aşıcı, E., Mesiar, R., On generating uninorms on some special classes of bounded lattices, Fuzzy Sets Syst. 
  7. Aşıcı, E., Mesiar, R., , Fuzzy Sets Syst. 408 (2021), 65-85. MR4210984DOI
  8. Beliakov, G., Pradera, A., Calvo, T., Aggregation Functions: A Guide for Practitioners., Studies in Fuzziness and Soft Computing, vol. 221, Springer, Berlin, Heidelberg 2007. MR3382259
  9. Birkhoff, G., Lattice Theory. Third edition., Providence 1967. MR0227053
  10. Calvo, T., Baets, B. De, Fodor, J., , Fuzzy Sets Syst. 120 (2001), 385-394. Zbl0977.03026MR1829256DOI
  11. Calvo, T., Mayor, G., Mesiar, R., Aggregation Operators: New Trends and Applications., Studies in Fuzziness and Soft Computing, vol. 97, Springer, Berlin, Heidelberg 2002. MR1936384
  12. Casasnovas, J., Mayor, G., , Fuzzy Sets Syst. 159 (2008), 1165-1177. Zbl1176.03023MR2416385DOI
  13. Çaylı, G. D., , Int. J. Approximate Reason. 115 (2019), 254-264. MR4018632DOI
  14. Çaylı, G. D., , Fuzzy Sets and Systems 395 (2020), 107-129. MR4109064DOI
  15. Çaylı, G. D., , Inform. Sci. 488 (2019), 111-139. MR3924420DOI
  16. Baets, B. De, Mesiar, R., , Fuzzy Sets Syst. 104 (1999), 61-75. Zbl0935.03060MR1685810DOI
  17. Drewniak, J., Drygaś, P., Rak, E., , Fuzzy Sets Syst. 159 (2008), 1646-1657. MR2419975DOI
  18. Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F., , Inform. Sci. 330 (2016), 315-327. DOI
  19. Fodor, J. C., Yager, R. R., Rybalov, A., 10.1142/S0218488597000312, Int. J. Uncertain Fuzz. Knowl.-Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI10.1142/S0218488597000312
  20. Fodor, J., Baets, B. De, , Fuzzy Sets Syst. 202 (2012), 89-99. Zbl1268.03027MR2934788DOI
  21. Kalina, M., , Open Phys. 14 (2016), 321-327. DOI
  22. Karaçal, F., Mesiar, R., , Fuzzy Sets Syst. 261 (2015), 33-43. MR3291484DOI
  23. Karaçal, F., Kesicioğlu, M. N., , Kybernetika 47 (2011), 300-314. Zbl1245.03086MR2828579DOI
  24. Kesicioğlu, M. N., Karaçal, F., Ertuğrul, Ü., , Inform. Sci. 411 (2017), 39-51. MR3659313DOI
  25. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  26. Klir, G. J., Yuan, B., Fuzzy Sets and Fuzzy Logic, Theory and Application., Prentice Hall PTR, Upper Saddle River, New Jersey 1995. MR1443433
  27. Saminger, S., , Fuzzy Sets Syst. 157 (2006), 1403-1416. Zbl1099.06004MR2226983DOI
  28. Yager, R. R., Rybalov, A., , Fuzzy Sets Syst. 80 (1996), 111-120. Zbl0871.04007MR1389951DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.