Global existence and blow-up for a shallow water equation
Adrian Constantin; Joachim Escher
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 26, Issue: 2, page 303-328
- ISSN: 0391-173X
Access Full Article
topHow to cite
topConstantin, Adrian, and Escher, Joachim. "Global existence and blow-up for a shallow water equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 303-328. <http://eudml.org/doc/84330>.
@article{Constantin1998,
author = {Constantin, Adrian, Escher, Joachim},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {soliton interaction},
language = {eng},
number = {2},
pages = {303-328},
publisher = {Scuola normale superiore},
title = {Global existence and blow-up for a shallow water equation},
url = {http://eudml.org/doc/84330},
volume = {26},
year = {1998},
}
TY - JOUR
AU - Constantin, Adrian
AU - Escher, Joachim
TI - Global existence and blow-up for a shallow water equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 303
EP - 328
LA - eng
KW - soliton interaction
UR - http://eudml.org/doc/84330
ER -
References
top- [1] M.S. Alber - R. Camassa - D. Holm - J.E. Marsden, On the link between umbilic geodesics and soliton solutions of nonlinear PDE's, Proc. Roy. Soc. London, Ser. A450 (1995), 677-692. Zbl0835.35125MR1356178
- [2] M.S. Alber - R. Camassa - D. Holm - J.E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's, Lett. Math. Phys.32 (1994), 137-151. Zbl0808.35124MR1296383
- [3] B. Benjamin - J.L. Bona - J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London, Ser. A272 (1972), 47-78. Zbl0229.35013MR427868
- [4] J.L. Bona - W.G. Pritchard - L.R. Scott, Solitary wave interaction, Phys. Fluids23 (1980), 438-441. Zbl0425.76019
- [5] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II, Geom. Funct. Anal.3 (1993), 209-262. Zbl0787.35098MR1215780
- [6] F. Calogero, An integrable Hamiltonian system, Phys. Lett. A201 (1995), 306-310. Zbl1020.37524MR1331829
- [7] F. Calogero - J.P. Francoise, A completely integrable Hamiltonian system, J. Math. Phys.37 (1996), 2863-2871. Zbl0864.58025MR1390240
- [8] F. Calogero - J.F. Vandiejen, Solvable quantum version of an integrable Hamiltonian system, J. Math. Phys.37 (1996), 4243-4251. Zbl0863.58022MR1408090
- [9] R. Camassa - D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (1993), 1661-1664. Zbl0972.35521MR1234453
- [10] R. Camassa - D. Holm - J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech.31 (1994), 1-33. Zbl0808.76011
- [11] A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Expositiones Math.15 (1997), 53-85. Zbl0881.35094MR1438436
- [12] A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations141 (1997), 218-235. Zbl0889.35022MR1488351
- [13] A. Constantin - J. Escher, Well-posedness and existence of global solutions for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math.51 (1998), 475-504. Zbl0934.35153MR1604278
- [14] F. Cooper - H. Shepard, Solitons in the Camassa-Holm shallow water equation, Phys. Lett. A194 (1994), 246-250. Zbl0961.76512MR1301972
- [15] R.K. Dodd - J.C. Eilbeck - J.D. Gibbon - H.C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York, 1984. Zbl0496.35001MR696935
- [16] A. Fokas - B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D4 (1981), 47-66. Zbl1194.37114MR636470
- [17] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D95 (1996), 296-343. Zbl0900.35345MR1406283
- [18] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1977. Zbl0361.35003MR473443
- [19] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, In: "Spectral Theory and Differential Equations ", 448, Springer Lecture Notes in Mathematics, 1975, pp. 25-70. Zbl0315.35077MR407477
- [20] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math.8 (1983), 93-126. Zbl0549.34001MR759907
- [21] P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. Zbl0162.41103MR235310
- [22] H.P. Mckean, Integrable systems and algebraic curves, In: "Global Analysis ", 755, Springer Lecture Notes in Mathematics, 1979, pp. 83-200. Zbl0449.35080MR564904
- [23] P.I. Naumkin - I. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, vol. 133, Transl. Math. Monographs, Providence, Rhode Island, 1994. Zbl0802.35002MR1261868
- [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983. Zbl0516.47023MR710486
- [25] J. Schiff, Zero curvature formulations of dual hierarchies, J. Math. Phys.37 (1996), 1928-1938. Zbl0863.35093MR1380881
- [26] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993. Zbl0821.42001MR1232192
- [27] G.B. Whitham, Linear and Nonlinear Waves, J. Wiley & Sons, New York, 1980. MR1699025
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.