Global existence and blow-up for a shallow water equation

Adrian Constantin; Joachim Escher

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 2, page 303-328
  • ISSN: 0391-173X

How to cite

top

Constantin, Adrian, and Escher, Joachim. "Global existence and blow-up for a shallow water equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 303-328. <http://eudml.org/doc/84330>.

@article{Constantin1998,
author = {Constantin, Adrian, Escher, Joachim},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {soliton interaction},
language = {eng},
number = {2},
pages = {303-328},
publisher = {Scuola normale superiore},
title = {Global existence and blow-up for a shallow water equation},
url = {http://eudml.org/doc/84330},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Constantin, Adrian
AU - Escher, Joachim
TI - Global existence and blow-up for a shallow water equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 303
EP - 328
LA - eng
KW - soliton interaction
UR - http://eudml.org/doc/84330
ER -

References

top
  1. [1] M.S. Alber - R. Camassa - D. Holm - J.E. Marsden, On the link between umbilic geodesics and soliton solutions of nonlinear PDE's, Proc. Roy. Soc. London, Ser. A450 (1995), 677-692. Zbl0835.35125MR1356178
  2. [2] M.S. Alber - R. Camassa - D. Holm - J.E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's, Lett. Math. Phys.32 (1994), 137-151. Zbl0808.35124MR1296383
  3. [3] B. Benjamin - J.L. Bona - J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. Roy. Soc. London, Ser. A272 (1972), 47-78. Zbl0229.35013MR427868
  4. [4] J.L. Bona - W.G. Pritchard - L.R. Scott, Solitary wave interaction, Phys. Fluids23 (1980), 438-441. Zbl0425.76019
  5. [5] J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II, Geom. Funct. Anal.3 (1993), 209-262. Zbl0787.35098MR1215780
  6. [6] F. Calogero, An integrable Hamiltonian system, Phys. Lett. A201 (1995), 306-310. Zbl1020.37524MR1331829
  7. [7] F. Calogero - J.P. Francoise, A completely integrable Hamiltonian system, J. Math. Phys.37 (1996), 2863-2871. Zbl0864.58025MR1390240
  8. [8] F. Calogero - J.F. Vandiejen, Solvable quantum version of an integrable Hamiltonian system, J. Math. Phys.37 (1996), 4243-4251. Zbl0863.58022MR1408090
  9. [9] R. Camassa - D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (1993), 1661-1664. Zbl0972.35521MR1234453
  10. [10] R. Camassa - D. Holm - J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech.31 (1994), 1-33. Zbl0808.76011
  11. [11] A. Constantin, The Hamiltonian structure of the Camassa-Holm equation, Expositiones Math.15 (1997), 53-85. Zbl0881.35094MR1438436
  12. [12] A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations141 (1997), 218-235. Zbl0889.35022MR1488351
  13. [13] A. Constantin - J. Escher, Well-posedness and existence of global solutions for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math.51 (1998), 475-504. Zbl0934.35153MR1604278
  14. [14] F. Cooper - H. Shepard, Solitons in the Camassa-Holm shallow water equation, Phys. Lett. A194 (1994), 246-250. Zbl0961.76512MR1301972
  15. [15] R.K. Dodd - J.C. Eilbeck - J.D. Gibbon - H.C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York, 1984. Zbl0496.35001MR696935
  16. [16] A. Fokas - B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries, Phys. D4 (1981), 47-66. Zbl1194.37114MR636470
  17. [17] B. Fuchssteiner, Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation, Phys. D95 (1996), 296-343. Zbl0900.35345MR1406283
  18. [18] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer Verlag, Berlin, 1977. Zbl0361.35003MR473443
  19. [19] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations, In: "Spectral Theory and Differential Equations ", 448, Springer Lecture Notes in Mathematics, 1975, pp. 25-70. Zbl0315.35077MR407477
  20. [20] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation, Stud. Appl. Math.8 (1983), 93-126. Zbl0549.34001MR759907
  21. [21] P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. Zbl0162.41103MR235310
  22. [22] H.P. Mckean, Integrable systems and algebraic curves, In: "Global Analysis ", 755, Springer Lecture Notes in Mathematics, 1979, pp. 83-200. Zbl0449.35080MR564904
  23. [23] P.I. Naumkin - I. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves, vol. 133, Transl. Math. Monographs, Providence, Rhode Island, 1994. Zbl0802.35002MR1261868
  24. [24] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, New York, 1983. Zbl0516.47023MR710486
  25. [25] J. Schiff, Zero curvature formulations of dual hierarchies, J. Math. Phys.37 (1996), 1928-1938. Zbl0863.35093MR1380881
  26. [26] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993. Zbl0821.42001MR1232192
  27. [27] G.B. Whitham, Linear and Nonlinear Waves, J. Wiley & Sons, New York, 1980. MR1699025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.