Certain partitions on a set and their applications to different classes of graded algebras
Antonio J. Calderón Martín; Boubacar Dieme
Communications in Mathematics (2021)
- Volume: 29, Issue: 2, page 243-254
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topMartín, Antonio J. Calderón, and Dieme, Boubacar. "Certain partitions on a set and their applications to different classes of graded algebras." Communications in Mathematics 29.2 (2021): 243-254. <http://eudml.org/doc/298074>.
@article{Martín2021,
abstract = {Let $(\{\mathfrak \{A\}\} , \{\epsilon \}_\{u\})$ and $(\{\mathfrak \{B\}\} , \{\epsilon \}_\{b\})$ be two pointed sets. Given a family of three maps $\{\mathcal \{F\}\}=\lbrace f_1\colon \{\{\mathfrak \{A\}\} \} \rightarrow \{\mathfrak \{A\}\} ; f_2\colon \{\{\mathfrak \{A\}\} \} \times \{\mathfrak \{A\}\} \rightarrow \{\mathfrak \{A\}\} ; f_3\colon \{\{\mathfrak \{A\}\} \} \times \{\mathfrak \{A\}\} \rightarrow \{\mathfrak \{B\}\} \rbrace $, this family provides an adequate decomposition of $\{\mathfrak \{A\}\} \setminus \lbrace \epsilon _u \rbrace $ as the orthogonal disjoint union of well-described $\{\mathcal \{F\}\}$-invariant subsets. This decomposition is applied to the structure theory of graded involutive algebras, graded quadratic algebras and graded weak $H^*$-algebras.},
author = {Martín, Antonio J. Calderón, Dieme, Boubacar},
journal = {Communications in Mathematics},
keywords = {Set; application; graded algebra; involutive algebra; quadratic algebra; weak $H^*$-algebra; structure theory},
language = {eng},
number = {2},
pages = {243-254},
publisher = {University of Ostrava},
title = {Certain partitions on a set and their applications to different classes of graded algebras},
url = {http://eudml.org/doc/298074},
volume = {29},
year = {2021},
}
TY - JOUR
AU - Martín, Antonio J. Calderón
AU - Dieme, Boubacar
TI - Certain partitions on a set and their applications to different classes of graded algebras
JO - Communications in Mathematics
PY - 2021
PB - University of Ostrava
VL - 29
IS - 2
SP - 243
EP - 254
AB - Let $({\mathfrak {A}} , {\epsilon }_{u})$ and $({\mathfrak {B}} , {\epsilon }_{b})$ be two pointed sets. Given a family of three maps ${\mathcal {F}}=\lbrace f_1\colon {{\mathfrak {A}} } \rightarrow {\mathfrak {A}} ; f_2\colon {{\mathfrak {A}} } \times {\mathfrak {A}} \rightarrow {\mathfrak {A}} ; f_3\colon {{\mathfrak {A}} } \times {\mathfrak {A}} \rightarrow {\mathfrak {B}} \rbrace $, this family provides an adequate decomposition of ${\mathfrak {A}} \setminus \lbrace \epsilon _u \rbrace $ as the orthogonal disjoint union of well-described ${\mathcal {F}}$-invariant subsets. This decomposition is applied to the structure theory of graded involutive algebras, graded quadratic algebras and graded weak $H^*$-algebras.
LA - eng
KW - Set; application; graded algebra; involutive algebra; quadratic algebra; weak $H^*$-algebra; structure theory
UR - http://eudml.org/doc/298074
ER -
References
top- Ambrose, W., 10.1090/S0002-9947-1945-0013235-8, Transactions of the American Mathematical Society, 57, 3, 1945, 364-386, JSTOR, (1945) DOI10.1090/S0002-9947-1945-0013235-8
- Bajo, I., Benayadi, S., Medina, A., 10.1016/j.jalgebra.2007.06.001, Journal of Algebra, 316, 1, 2007, 174-188, Elsevier, (2007) DOI10.1016/j.jalgebra.2007.06.001
- Benayadi, S., 10.1080/00927879508825437, Communications in Algebra, 23, 10, 1995, 3867-3887, Taylor & Francis, (1995) DOI10.1080/00927879508825437
- Calderón, A.J., Draper, C., Martin, C., Ndoye, D., 10.1007/s00009-017-1059-7, Mediterranean Journal of Mathematics, 15, 1, 2018, 1-18, Springer, (2018) DOI10.1007/s00009-017-1059-7
- Mira, J.A. Cuenca, Mart{í}n, A.G., Gonz{á}lez, C.M., 10.1017/S0305004100068626, Mathematical Proceedings of the Cambridge Philosophical Society, 107, 2, 1990, 361-365, Cambridge University Press, (1990) DOI10.1017/S0305004100068626
- Draper, C., Martín, C., Gradings on , Linear Algebra and its Applications, 418, 1, 2006, 85-111, (2006)
- Draper, C., Martín, C., Gradings on the Albert algebra and on , Revista Matemática Iberoamericana, 25, 3, 2009, 841-908, Real Sociedad Matemática Española, (2009)
- Elduque, A., Kochetov, M., Gradings on simple Lie algebras, 2013, Mathematical Surveys and Monographs 189, American Mathematical Society, (2013)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.