On the Finsler geometry of the Heisenberg group and its extension
Archivum Mathematicum (2021)
- Volume: 057, Issue: 2, page 101-111
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNasehi, Mehri. "On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension." Archivum Mathematicum 057.2 (2021): 101-111. <http://eudml.org/doc/298086>.
@article{Nasehi2021,
abstract = {We first classify left invariant Douglas $(\alpha , \beta )$-metrics on the Heisenberg group $H_\{2n+1\}$ of dimension $2n + 1$ and its extension i.e., oscillator group. Then we explicitly give the flag curvature formulas and geodesic vectors for these spaces, when equipped with these metrics. We also explicitly obtain $S$-curvature formulas of left invariant Randers metrics of Douglas type on these spaces and obtain a comparison on geometry of these spaces, when equipped with left invariant Douglas $(\alpha , \beta )$-metrics. More exactly, we show that although the results concerning bi-invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are similar, several results concerning left invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are different. For example we prove that the existence of left-invariant Matsumoto, Kropina and Randers metrics of Berwald type on oscillator groups can not extend to Heisenberg groups. Also we prove that oscillator groups have always vanishing $S$-curvature, whereas this can not occur on Heisenberg groups. Moreover, we prove that there exist new geodesic vectors on oscillator groups which can not extend to the Heisenberg groups.},
author = {Nasehi, Mehri},
journal = {Archivum Mathematicum},
keywords = {Heisenberg groups; oscillator groups; left-invariant Douglas $(\alpha ,\beta )$-metrics},
language = {eng},
number = {2},
pages = {101-111},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Finsler geometry of the Heisenberg group $H_\{2n+1\}$ and its extension},
url = {http://eudml.org/doc/298086},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Nasehi, Mehri
TI - On the Finsler geometry of the Heisenberg group $H_{2n+1}$ and its extension
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 2
SP - 101
EP - 111
AB - We first classify left invariant Douglas $(\alpha , \beta )$-metrics on the Heisenberg group $H_{2n+1}$ of dimension $2n + 1$ and its extension i.e., oscillator group. Then we explicitly give the flag curvature formulas and geodesic vectors for these spaces, when equipped with these metrics. We also explicitly obtain $S$-curvature formulas of left invariant Randers metrics of Douglas type on these spaces and obtain a comparison on geometry of these spaces, when equipped with left invariant Douglas $(\alpha , \beta )$-metrics. More exactly, we show that although the results concerning bi-invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are similar, several results concerning left invariant Douglas $(\alpha ,\beta )$-metrics on these spaces are different. For example we prove that the existence of left-invariant Matsumoto, Kropina and Randers metrics of Berwald type on oscillator groups can not extend to Heisenberg groups. Also we prove that oscillator groups have always vanishing $S$-curvature, whereas this can not occur on Heisenberg groups. Moreover, we prove that there exist new geodesic vectors on oscillator groups which can not extend to the Heisenberg groups.
LA - eng
KW - Heisenberg groups; oscillator groups; left-invariant Douglas $(\alpha ,\beta )$-metrics
UR - http://eudml.org/doc/298086
ER -
References
top- Aradi, B., Left invariant Finsler manifolds are generalized Berwald, Eur. J. Pure Appl. Math. 8 (2015), 118–125. (2015) MR3313971
- Arnold, V.I., 10.5802/aif.233, Ann. Inst. Fourier (Grenoble) 16 (1) (1966), 319–361. (1966) MR0202082DOI10.5802/aif.233
- Bacso, S., Cheng, X., Shen, Z., Curvature properties of -metrics, Finsler Geometry, Sapporo 2005, Adv. Stud. Pure Math., vol. 48, 2007, pp. 73–110. (2007) MR2389252
- Berndt, J., Tricceri, F., Vanhecke, L., Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces, Lecture Notes in Math., vol. 1598, Springer, Heidelberg, 1995. (1995) MR1340192
- Biggs, R., Remsing, C.C., 10.1016/j.difgeo.2014.03.003, Differential Geom. Appl. 35 (2014), 199–209. (2014) MR3254303DOI10.1016/j.difgeo.2014.03.003
- Chern, S.S., Shen, Z., Riemann-Finsler geometry, World Scientific, Singapore, 2005. (2005) MR2169595
- Deng, S., 10.1016/j.difgeo.2008.06.007, Differential Geom. Appl. 27 (2010), 75–84. (2010) MR2488989DOI10.1016/j.difgeo.2008.06.007
- Deng, S., Homogeneous Finsler spaces, Springer, New York, 2012. (2012) MR2962626
- Deng, S., Hosseini, M., Liu, H., Salimi Moghaddam, H.R., On the left invariant -metrics on some Lie groups, to appear in Houston Journal of Mathematics. MR4102870
- Deng, S., Hou, Z., 10.1088/0305-4470/37/15/004, J. Phys. A Math. Gen. 37 (2004), 4353–4360. (2004) Zbl1049.83005MR2063598DOI10.1088/0305-4470/37/15/004
- Deng, S., Hu, Z., 10.4153/CJM-2012-004-6, Canad. J. Math. 65 (2013), 66–81. (2013) MR3004458DOI10.4153/CJM-2012-004-6
- Fasihi-Ramandi, Gh., Azami, S., Geometry of left invariant Randers metric on the Heisenberg group, submitted.
- Gadea, P.M., Oubina, J.A., 10.1007/s000130050403, Arch. Math. (Basel) 73 (1999), 311–320. (1999) MR1710084DOI10.1007/s000130050403
- Kowalski, O., Vanhecke, L., Riemannian manifolds with homogeneous geodesics, Boll. Un. Mat. Ital. B (7) 5 (1) (1991), 189–246. (1991) Zbl0731.53046MR1110676
- Latifi, D., Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen 76 (1–2) (2010), 219–226. (2010) MR2598183
- Lengyelné Tóth, A., Kovács, Z., 10.5486/PMD.2014.5894, Publ. Math. Debrecen 85 (1–2) (2014), 161–179. (2014) MR3231513DOI10.5486/PMD.2014.5894
- Lengyelné Tóth, A., Kovács, Z., Curvatures of left invariant Randers metric on the five-dimensional Heisenberg group, Balkan J. Geom. Appl. 22 (1) (2017), 33–40. (2017) MR3678008
- Liu, H., Deng, S., Homogeneous -metrics of Douglas type, Forum Math. (2014), 1–17. (2014) MR3393392
- Milnor, J., 10.1016/S0001-8708(76)80002-3, Adv. Math. 21 (3) (1976), 293–329. (1976) MR0425012DOI10.1016/S0001-8708(76)80002-3
- Nasehi, M., On 5-dimensional 2-step homogeneous Randers nilmanifolds of Douglas type, Bull. Iranian Math. Soc. 43 (2017), 695–706. (2017) MR3670890
- Nasehi, M., On the Geometry of Higher Dimensional Heisenberg Groups, Mediterr. J. Math. 29 (2019), 1–17. (2019) MR3911142
- Nasehi, M., Aghasi, M., On the geometry of Douglas Heisenberg group, 48th Annual Irannian Mathematics Conference, 2017, pp. 1720–1723. (2017)
- Parhizkar, M., Salimi Moghaddam, H.R., Geodesic vector fields of invariant -metrics on homogeneous spaces, Int. Electron. J. Geom. 6 (2) (2013), 39–44. (2013) MR3125830
- Rahmani, S., 10.1016/0393-0440(92)90033-W, J. Geom. Phys. 9 (1992), 295–302. (1992) MR1171140DOI10.1016/0393-0440(92)90033-W
- Vukmirovic, S., 10.1016/j.geomphys.2015.01.005, J. Geom. Phys. 94 (2015), 72–80. (2015) MR3350270DOI10.1016/j.geomphys.2015.01.005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.