Solution of option pricing equations using orthogonal polynomial expansion

Falko Baustian; Kateřina Filipová; Jan Pospíšil

Applications of Mathematics (2021)

  • Volume: 66, Issue: 4, page 553-582
  • ISSN: 0862-7940

Abstract

top
We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.

How to cite

top

Baustian, Falko, Filipová, Kateřina, and Pospíšil, Jan. "Solution of option pricing equations using orthogonal polynomial expansion." Applications of Mathematics 66.4 (2021): 553-582. <http://eudml.org/doc/298093>.

@article{Baustian2021,
abstract = {We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.},
author = {Baustian, Falko, Filipová, Kateřina, Pospíšil, Jan},
journal = {Applications of Mathematics},
keywords = {orthogonal polynomial expansion; Hermite polynomial; Laguerre polynomial; Heston model; option pricing},
language = {eng},
number = {4},
pages = {553-582},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of option pricing equations using orthogonal polynomial expansion},
url = {http://eudml.org/doc/298093},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Baustian, Falko
AU - Filipová, Kateřina
AU - Pospíšil, Jan
TI - Solution of option pricing equations using orthogonal polynomial expansion
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 553
EP - 582
AB - We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.
LA - eng
KW - orthogonal polynomial expansion; Hermite polynomial; Laguerre polynomial; Heston model; option pricing
UR - http://eudml.org/doc/298093
ER -

References

top
  1. Abramowitz, M., (eds.), I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55. U. S. Department of Commerce, Washington (1964). (1964) Zbl0171.38503MR0167642
  2. Ackerer, D., Filipović, D., 10.1111/mafi.12226, Math. Finance 30 (2020), 47-84. (2020) Zbl07200951MR4067070DOI10.1111/mafi.12226
  3. Alziary, B., Takáč, P., Analytic solutions and complete markets for the Heston model with stochastic volatility, Electron. J. Differ. Equ. 2018 (2018), Article ID 168, 54 pages. (2018) Zbl1406.35415MR3874931
  4. Alziary, B., Takáč, P., The Heston stochastic volatility model has a boundary trace at zero volatility, Available at https://arxiv.org/abs/2004.00444 (2020), 48 pages. (2020) 
  5. Aubin, J. P., Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 599-637. (1967) Zbl0276.65052MR0233068
  6. Bates, D. S., 10.1093/rfs/9.1.69, Rev. Financ. Stud. 9 (1996), 69-107. (1996) DOI10.1093/rfs/9.1.69
  7. Baustian, F., Mrázek, M., Pospíšil, J., Sobotka, T., 10.1002/asmb.2248, Appl. Stoch. Models Bus. Ind. 33 (2017), 422-442. (2017) Zbl1420.91444MR3690484DOI10.1002/asmb.2248
  8. Birkhoff, G., Schultz, M. H., Varga, R. S., 10.1007/BF02161845, Numer. Math. 11 (1968), 232-256. (1968) Zbl0159.20904MR0226817DOI10.1007/BF02161845
  9. Black, F., Scholes, M., 10.1086/260062, J. Polit. Econ. 81 (1973), 637-654. (1973) Zbl1092.91524MR3363443DOI10.1086/260062
  10. Bramble, J. H., Schatz, A. H., Thomée, V., Wahlbin, L. B., 10.1137/0714015, SIAM J. Numer. Anal. 14 (1977), 218-241. (1977) Zbl0364.65084MR0448926DOI10.1137/0714015
  11. Bramble, J. H., Thomée, V., 10.1007/BF02417101, Ann. Mat. Pura Appl., IV. Ser. 101 (1974), 115-152. (1974) Zbl0306.65073MR0388805DOI10.1007/BF02417101
  12. Corrado, C. J., Su, T., 10.1111/j.1475-6803.1996.tb00592.x, J. Financ. Research 19 (1996), 175-192. (1996) DOI10.1111/j.1475-6803.1996.tb00592.x
  13. J. C. Cox, J. E. Ingersoll, Jr., S. A. Ross, 10.2307/1911242, Econometrica 53 (1985), 385-407. (1985) Zbl1274.91447MR785475DOI10.2307/1911242
  14. Daněk, J., Pospíšil, J., 10.1080/00207160.2019.1614174, Int. J. Comput. Math. 97 (2020), 1268-1292. (2020) MR4095540DOI10.1080/00207160.2019.1614174
  15. Davis, M., Obłój, J., 10.4064/bc83-0-4, Advances in Mathematics of Finance Banach Center Publications 83. Polish Academy of Sciences, Warsaw (2008), 49-60. (2008) Zbl1153.91479MR2509226DOI10.4064/bc83-0-4
  16. J. Douglas, Jr., T. Dupont, 10.1137/0707048, SIAM J. Numer. Anal. 7 (1970), 575-626. (1970) Zbl0224.35048MR0277126DOI10.1137/0707048
  17. Dupont, T., 10.1016/B978-0-12-068650-6.50022-8, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 491-504. (1972) Zbl0279.65086MR0403255DOI10.1016/B978-0-12-068650-6.50022-8
  18. Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019
  19. Filipová, K., Solution of Option Pricing Equations Using Orthogonal Polynomial Expansion: Master's Thesis, University of West Bohemia, Plzeň (2019). (2019) 
  20. Fix, G., Nassif, N., 10.1007/BF01402523, Numer. Math. 19 (1972), 127-135. (1972) Zbl0244.65063MR0311122DOI10.1007/BF01402523
  21. Fouque, J.-P., Papanicolaou, G., Sircar, K. R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge (2000). (2000) Zbl0954.91025MR1768877
  22. Funaro, D., 10.1007/978-3-540-46783-0, Lecture Notes in Physics: Monographs 8. Springer, Berlin (1992). (1992) Zbl0774.41010MR1176949DOI10.1007/978-3-540-46783-0
  23. Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004). (2004) Zbl1130.42300MR2061539
  24. Heston, S. L., 10.1093/rfs/6.2.327, Rev. Financ. Stud. 6 (1993), 327-343. (1993) Zbl1384.35131MR3929676DOI10.1093/rfs/6.2.327
  25. Heston, S. L., Rossi, A. G., 10.1093/rapstu/raw006, Review Asset Pricing Studies 7 (2017), 2-42. (2017) DOI10.1093/rapstu/raw006
  26. Hull, J. C., Options, Futures, and Other Derivatives, Pearson, New York (2018). (2018) Zbl1087.91025
  27. Hull, J. C., White, A. D., 10.1111/j.1540-6261.1987.tb02568.x, J. Finance 42 (1987), 281-300. (1987) DOI10.1111/j.1540-6261.1987.tb02568.x
  28. Jarrow, R., Rudd, A., 10.1016/0304-405X(82)90007-1, J. Financ. Econ. 10 (1982), 347-369. (1982) DOI10.1016/0304-405X(82)90007-1
  29. Kallenberg, O., 10.1007/978-1-4757-4015-8, Probability and Its Applications. Springer, New York (2002). (2002) Zbl0996.60001MR1876169DOI10.1007/978-1-4757-4015-8
  30. Karatzas, I., Shreve, S. E., 10.1007/978-1-4684-0302-2, Graduate Texts in Mathematics 113. Springer, New York (1991). (1991) Zbl0734.60060MR1121940DOI10.1007/978-1-4684-0302-2
  31. Kufner, A., Weighted Sobolev Spaces, Teubner-Texte zur Mathematik 83. B. G. Teubner, Leipzig (1980). (1980) Zbl0455.46034MR664599
  32. Kufner, A., Sändig, A.-M., Some Applications of Weighted Sobolev Spaces, Teubner-Texte zur Mathematik 100. B. G. Teubner, Leipzig (1987). (1987) Zbl0662.46034MR926688
  33. Lebedev, N. N., Special Functions and Their Applications, Prentice-Hall, Englewood Cliffs (1965). (1965) Zbl0131.07002MR0174795
  34. Lewis, A. L., Option Valuation Under Stochastic Volatility: With Mathematica Code, Finance Press, Newport Beach (2000). (2000) Zbl0937.91060MR1742310
  35. Lewis, A. L., Option Valuation Under Stochastic Volatility II: With Mathematica Code, Finance Press, Newport Beach (2016). (2016) Zbl1391.91001MR3526206
  36. Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge (2010). (2010) Zbl1198.00002MR2723248
  37. Pospíšil, J., Švígler, V., 10.1080/00207160.2018.1494826, Int. J. Comput. Math. 96 (2019), 2177-2200. (2019) MR4008120DOI10.1080/00207160.2018.1494826
  38. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge (2007). (2007) Zbl1132.65001MR2371990
  39. Reed, M., Simon, B., 10.1016/b978-0-12-585001-8.x5001-6, Academic Press, New York (1980). (1980) Zbl0459.46001MR751959DOI10.1016/b978-0-12-585001-8.x5001-6
  40. Rouah, F. D., 10.1002/9781118656471, Wiley Finance Series. John Wiley & Sons, Hoboken (2013). (2013) Zbl1304.91007DOI10.1002/9781118656471
  41. Stein, E. M., Stein, J. C., 10.1093/rfs/4.4.727, Rev. Financ. Stud. 4 (1991), 727-752. (1991) Zbl06857133DOI10.1093/rfs/4.4.727
  42. Swartz, B., Wendroff, B., 10.1090/S0025-5718-1969-0239768-7, Math. Comput. 23 (1969), 37-49. (1969) Zbl0184.38502MR0239768DOI10.1090/S0025-5718-1969-0239768-7
  43. Szegö, G., 10.1090/coll/023, Colloquium Publications 23. American Mathematical Society, Providence (1975). (1975) Zbl0305.42011MR0372517DOI10.1090/coll/023
  44. Thangavelu, S., 10.2307/j.ctv10crg8w, Mathematical Notes 42. Princeton University Press, Princeton (1993). (1993) Zbl0791.41030MR1215939DOI10.2307/j.ctv10crg8w
  45. Thomée, V., 10.1007/BFb0064472, Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics 606. Springer, Berlin (1977), 343-352. (1977) Zbl0356.35043MR0658321DOI10.1007/BFb0064472
  46. Thomée, V., Galerkin-finite element methods for parabolic equations, Proceedings of the International Congress of Mathematicians. Vol. 2 Academia Scientiarum Fennica, Helsinki (1980), 943-952. (1980) Zbl0418.65050MR0562711
  47. Thomée, V., 10.1007/3-540-33122-0, Springer Series in Computational Mathematics 25. Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024DOI10.1007/3-540-33122-0
  48. Sydow, L. von, 10.1080/00207160.2015.1072172, Int. J. Comput. Math. 92 (2015), 2361-2379. (2015) Zbl1335.91113MR3417364DOI10.1080/00207160.2015.1072172
  49. Wheeler, M. F., 10.1137/0710062, SIAM J. Numer. Anal. 10 (1973), 723-759. (1973) Zbl0232.35060MR0351124DOI10.1137/0710062
  50. Wilmott, P., Derivatives: The Theory and Practice of Financial Engineering, John Wiley & Sons, Chichester (1998). (1998) 
  51. Xiu, D., 10.1016/j.jeconom.2014.01.003, J. Econom. 179 (2014), 158-177. (2014) Zbl1298.91171MR3170222DOI10.1016/j.jeconom.2014.01.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.