Solution of option pricing equations using orthogonal polynomial expansion
Falko Baustian; Kateřina Filipová; Jan Pospíšil
Applications of Mathematics (2021)
- Volume: 66, Issue: 4, page 553-582
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBaustian, Falko, Filipová, Kateřina, and Pospíšil, Jan. "Solution of option pricing equations using orthogonal polynomial expansion." Applications of Mathematics 66.4 (2021): 553-582. <http://eudml.org/doc/298093>.
@article{Baustian2021,
abstract = {We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.},
author = {Baustian, Falko, Filipová, Kateřina, Pospíšil, Jan},
journal = {Applications of Mathematics},
keywords = {orthogonal polynomial expansion; Hermite polynomial; Laguerre polynomial; Heston model; option pricing},
language = {eng},
number = {4},
pages = {553-582},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of option pricing equations using orthogonal polynomial expansion},
url = {http://eudml.org/doc/298093},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Baustian, Falko
AU - Filipová, Kateřina
AU - Pospíšil, Jan
TI - Solution of option pricing equations using orthogonal polynomial expansion
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 4
SP - 553
EP - 582
AB - We study both analytic and numerical solutions of option pricing equations using systems of orthogonal polynomials. Using a Galerkin-based method, we solve the parabolic partial differential equation for the Black-Scholes model using Hermite polynomials and for the Heston model using Hermite and Laguerre polynomials. We compare the obtained solutions to existing semi-closed pricing formulas. Special attention is paid to the solution of the Heston model at the boundary with vanishing volatility.
LA - eng
KW - orthogonal polynomial expansion; Hermite polynomial; Laguerre polynomial; Heston model; option pricing
UR - http://eudml.org/doc/298093
ER -
References
top- Abramowitz, M., (eds.), I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55. U. S. Department of Commerce, Washington (1964). (1964) Zbl0171.38503MR0167642
- Ackerer, D., Filipović, D., 10.1111/mafi.12226, Math. Finance 30 (2020), 47-84. (2020) Zbl07200951MR4067070DOI10.1111/mafi.12226
- Alziary, B., Takáč, P., Analytic solutions and complete markets for the Heston model with stochastic volatility, Electron. J. Differ. Equ. 2018 (2018), Article ID 168, 54 pages. (2018) Zbl1406.35415MR3874931
- Alziary, B., Takáč, P., The Heston stochastic volatility model has a boundary trace at zero volatility, Available at https://arxiv.org/abs/2004.00444 (2020), 48 pages. (2020)
- Aubin, J. P., Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 21 (1967), 599-637. (1967) Zbl0276.65052MR0233068
- Bates, D. S., 10.1093/rfs/9.1.69, Rev. Financ. Stud. 9 (1996), 69-107. (1996) DOI10.1093/rfs/9.1.69
- Baustian, F., Mrázek, M., Pospíšil, J., Sobotka, T., 10.1002/asmb.2248, Appl. Stoch. Models Bus. Ind. 33 (2017), 422-442. (2017) Zbl1420.91444MR3690484DOI10.1002/asmb.2248
- Birkhoff, G., Schultz, M. H., Varga, R. S., 10.1007/BF02161845, Numer. Math. 11 (1968), 232-256. (1968) Zbl0159.20904MR0226817DOI10.1007/BF02161845
- Black, F., Scholes, M., 10.1086/260062, J. Polit. Econ. 81 (1973), 637-654. (1973) Zbl1092.91524MR3363443DOI10.1086/260062
- Bramble, J. H., Schatz, A. H., Thomée, V., Wahlbin, L. B., 10.1137/0714015, SIAM J. Numer. Anal. 14 (1977), 218-241. (1977) Zbl0364.65084MR0448926DOI10.1137/0714015
- Bramble, J. H., Thomée, V., 10.1007/BF02417101, Ann. Mat. Pura Appl., IV. Ser. 101 (1974), 115-152. (1974) Zbl0306.65073MR0388805DOI10.1007/BF02417101
- Corrado, C. J., Su, T., 10.1111/j.1475-6803.1996.tb00592.x, J. Financ. Research 19 (1996), 175-192. (1996) DOI10.1111/j.1475-6803.1996.tb00592.x
- J. C. Cox, J. E. Ingersoll, Jr., S. A. Ross, 10.2307/1911242, Econometrica 53 (1985), 385-407. (1985) Zbl1274.91447MR785475DOI10.2307/1911242
- Daněk, J., Pospíšil, J., 10.1080/00207160.2019.1614174, Int. J. Comput. Math. 97 (2020), 1268-1292. (2020) MR4095540DOI10.1080/00207160.2019.1614174
- Davis, M., Obłój, J., 10.4064/bc83-0-4, Advances in Mathematics of Finance Banach Center Publications 83. Polish Academy of Sciences, Warsaw (2008), 49-60. (2008) Zbl1153.91479MR2509226DOI10.4064/bc83-0-4
- J. Douglas, Jr., T. Dupont, 10.1137/0707048, SIAM J. Numer. Anal. 7 (1970), 575-626. (1970) Zbl0224.35048MR0277126DOI10.1137/0707048
- Dupont, T., 10.1016/B978-0-12-068650-6.50022-8, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 491-504. (1972) Zbl0279.65086MR0403255DOI10.1016/B978-0-12-068650-6.50022-8
- Evans, L. C., 10.1090/gsm/019, Graduate Studies in Mathematics 19. American Mathematical Society, Providence (2010). (2010) Zbl1194.35001MR2597943DOI10.1090/gsm/019
- Filipová, K., Solution of Option Pricing Equations Using Orthogonal Polynomial Expansion: Master's Thesis, University of West Bohemia, Plzeň (2019). (2019)
- Fix, G., Nassif, N., 10.1007/BF01402523, Numer. Math. 19 (1972), 127-135. (1972) Zbl0244.65063MR0311122DOI10.1007/BF01402523
- Fouque, J.-P., Papanicolaou, G., Sircar, K. R., Derivatives in Financial Markets with Stochastic Volatility, Cambridge University Press, Cambridge (2000). (2000) Zbl0954.91025MR1768877
- Funaro, D., 10.1007/978-3-540-46783-0, Lecture Notes in Physics: Monographs 8. Springer, Berlin (1992). (1992) Zbl0774.41010MR1176949DOI10.1007/978-3-540-46783-0
- Gautschi, W., Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2004). (2004) Zbl1130.42300MR2061539
- Heston, S. L., 10.1093/rfs/6.2.327, Rev. Financ. Stud. 6 (1993), 327-343. (1993) Zbl1384.35131MR3929676DOI10.1093/rfs/6.2.327
- Heston, S. L., Rossi, A. G., 10.1093/rapstu/raw006, Review Asset Pricing Studies 7 (2017), 2-42. (2017) DOI10.1093/rapstu/raw006
- Hull, J. C., Options, Futures, and Other Derivatives, Pearson, New York (2018). (2018) Zbl1087.91025
- Hull, J. C., White, A. D., 10.1111/j.1540-6261.1987.tb02568.x, J. Finance 42 (1987), 281-300. (1987) DOI10.1111/j.1540-6261.1987.tb02568.x
- Jarrow, R., Rudd, A., 10.1016/0304-405X(82)90007-1, J. Financ. Econ. 10 (1982), 347-369. (1982) DOI10.1016/0304-405X(82)90007-1
- Kallenberg, O., 10.1007/978-1-4757-4015-8, Probability and Its Applications. Springer, New York (2002). (2002) Zbl0996.60001MR1876169DOI10.1007/978-1-4757-4015-8
- Karatzas, I., Shreve, S. E., 10.1007/978-1-4684-0302-2, Graduate Texts in Mathematics 113. Springer, New York (1991). (1991) Zbl0734.60060MR1121940DOI10.1007/978-1-4684-0302-2
- Kufner, A., Weighted Sobolev Spaces, Teubner-Texte zur Mathematik 83. B. G. Teubner, Leipzig (1980). (1980) Zbl0455.46034MR664599
- Kufner, A., Sändig, A.-M., Some Applications of Weighted Sobolev Spaces, Teubner-Texte zur Mathematik 100. B. G. Teubner, Leipzig (1987). (1987) Zbl0662.46034MR926688
- Lebedev, N. N., Special Functions and Their Applications, Prentice-Hall, Englewood Cliffs (1965). (1965) Zbl0131.07002MR0174795
- Lewis, A. L., Option Valuation Under Stochastic Volatility: With Mathematica Code, Finance Press, Newport Beach (2000). (2000) Zbl0937.91060MR1742310
- Lewis, A. L., Option Valuation Under Stochastic Volatility II: With Mathematica Code, Finance Press, Newport Beach (2016). (2016) Zbl1391.91001MR3526206
- Olver, F. W. J., Lozier, D. W., Boisvert, R. F., (eds.), C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge (2010). (2010) Zbl1198.00002MR2723248
- Pospíšil, J., Švígler, V., 10.1080/00207160.2018.1494826, Int. J. Comput. Math. 96 (2019), 2177-2200. (2019) MR4008120DOI10.1080/00207160.2018.1494826
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge (2007). (2007) Zbl1132.65001MR2371990
- Reed, M., Simon, B., 10.1016/b978-0-12-585001-8.x5001-6, Academic Press, New York (1980). (1980) Zbl0459.46001MR751959DOI10.1016/b978-0-12-585001-8.x5001-6
- Rouah, F. D., 10.1002/9781118656471, Wiley Finance Series. John Wiley & Sons, Hoboken (2013). (2013) Zbl1304.91007DOI10.1002/9781118656471
- Stein, E. M., Stein, J. C., 10.1093/rfs/4.4.727, Rev. Financ. Stud. 4 (1991), 727-752. (1991) Zbl06857133DOI10.1093/rfs/4.4.727
- Swartz, B., Wendroff, B., 10.1090/S0025-5718-1969-0239768-7, Math. Comput. 23 (1969), 37-49. (1969) Zbl0184.38502MR0239768DOI10.1090/S0025-5718-1969-0239768-7
- Szegö, G., 10.1090/coll/023, Colloquium Publications 23. American Mathematical Society, Providence (1975). (1975) Zbl0305.42011MR0372517DOI10.1090/coll/023
- Thangavelu, S., 10.2307/j.ctv10crg8w, Mathematical Notes 42. Princeton University Press, Princeton (1993). (1993) Zbl0791.41030MR1215939DOI10.2307/j.ctv10crg8w
- Thomée, V., 10.1007/BFb0064472, Mathematical Aspects of Finite Element Methods Lecture Notes in Mathematics 606. Springer, Berlin (1977), 343-352. (1977) Zbl0356.35043MR0658321DOI10.1007/BFb0064472
- Thomée, V., Galerkin-finite element methods for parabolic equations, Proceedings of the International Congress of Mathematicians. Vol. 2 Academia Scientiarum Fennica, Helsinki (1980), 943-952. (1980) Zbl0418.65050MR0562711
- Thomée, V., 10.1007/3-540-33122-0, Springer Series in Computational Mathematics 25. Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024DOI10.1007/3-540-33122-0
- Sydow, L. von, 10.1080/00207160.2015.1072172, Int. J. Comput. Math. 92 (2015), 2361-2379. (2015) Zbl1335.91113MR3417364DOI10.1080/00207160.2015.1072172
- Wheeler, M. F., 10.1137/0710062, SIAM J. Numer. Anal. 10 (1973), 723-759. (1973) Zbl0232.35060MR0351124DOI10.1137/0710062
- Wilmott, P., Derivatives: The Theory and Practice of Financial Engineering, John Wiley & Sons, Chichester (1998). (1998)
- Xiu, D., 10.1016/j.jeconom.2014.01.003, J. Econom. 179 (2014), 158-177. (2014) Zbl1298.91171MR3170222DOI10.1016/j.jeconom.2014.01.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.