Some results on the class of σ -unbounded Dunford-Pettis operators

Noufissa Hafidi; Jawad H'michane

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 4, page 431-443
  • ISSN: 0010-2628

Abstract

top
We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.

How to cite

top

Hafidi, Noufissa, and H'michane, Jawad. "Some results on the class of $\sigma $-unbounded Dunford-Pettis operators." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 431-443. <http://eudml.org/doc/298136>.

@article{Hafidi2021,
abstract = {We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.},
author = {Hafidi, Noufissa, H'michane, Jawad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\sigma $-un-Dunford–Pettis operator; unbounded norm convergence; order continuous Banach lattice; atomic Banach lattice; relatively sequentially un-compact set; Schur property},
language = {eng},
number = {4},
pages = {431-443},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on the class of $\sigma $-unbounded Dunford-Pettis operators},
url = {http://eudml.org/doc/298136},
volume = {62},
year = {2021},
}

TY - JOUR
AU - Hafidi, Noufissa
AU - H'michane, Jawad
TI - Some results on the class of $\sigma $-unbounded Dunford-Pettis operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 431
EP - 443
AB - We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.
LA - eng
KW - $\sigma $-un-Dunford–Pettis operator; unbounded norm convergence; order continuous Banach lattice; atomic Banach lattice; relatively sequentially un-compact set; Schur property
UR - http://eudml.org/doc/298136
ER -

References

top
  1. Aliprantis C. D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
  2. Aqzzouz B., Elbour A., H'michane J., 10.1007/s11117-008-2288-6, Positivity 13 (2009), no. 4, 683–692. MR2538515DOI10.1007/s11117-008-2288-6
  3. Aqzzouz B., H'michane J., 10.21136/MB.2009.140668, Math. Bohem. 134 (2009), no. 4, 359–367. MR2597231DOI10.21136/MB.2009.140668
  4. Deng Y., O’Brien M., Troitsky V. G., 10.1007/s11117-016-0446-9, Positivity 21 (2017), no. 3, 963–974. MR3688941DOI10.1007/s11117-016-0446-9
  5. Gao N., 10.1016/j.jmaa.2014.04.067, J. Math. Anal. Appl. 419 (2014), no. 1, 347–354. MR3217153DOI10.1016/j.jmaa.2014.04.067
  6. Gao N., Xanthos F., 10.1016/j.jmaa.2014.01.078, J. Math. Anal. Appl. 415 (2014), no. 2, 931–947. MR3178299DOI10.1016/j.jmaa.2014.01.078
  7. Kandić M., Li H., Troitsky V. G., 10.1007/s11117-017-0541-6, Positivity 22 (2018), no. 3, 745–760. MR3817116DOI10.1007/s11117-017-0541-6
  8. Kandić M., Marabeh M. A. A., Troitsky V. G., 10.1016/j.jmaa.2017.01.041, J. Math. Anal. Appl. 451 (2017), no. 1, 259–279. MR3619237DOI10.1016/j.jmaa.2017.01.041
  9. Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
  10. Nakano H., 10.2307/1969044, Ann. of Math. (20) 49 (1948), no. 2, 538–556. MR0029112DOI10.2307/1969044
  11. Wang Z., Chen Z., Chen J., Continuous operators for unbounded convergence in Banach lattices, available at arXiv:1903.04854 [math.FA] (2021), 9 pages. MR4293863
  12. Wickstead A. W., 10.1017/S1446788700020346, J. Austral. Math. Soc. Ser. A 24 (1977), no. 3, 312–319. MR0482060DOI10.1017/S1446788700020346
  13. Zaanen A. C., Riesz Spaces. II, North-Holland Mathematical Library, 30, North-Holland Publishing Company, Amsterdam, 1983. MR0704021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.