Some results on the class of -unbounded Dunford-Pettis operators
Noufissa Hafidi; Jawad H'michane
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 4, page 431-443
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHafidi, Noufissa, and H'michane, Jawad. "Some results on the class of $\sigma $-unbounded Dunford-Pettis operators." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 431-443. <http://eudml.org/doc/298136>.
@article{Hafidi2021,
abstract = {We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.},
author = {Hafidi, Noufissa, H'michane, Jawad},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\sigma $-un-Dunford–Pettis operator; unbounded norm convergence; order continuous Banach lattice; atomic Banach lattice; relatively sequentially un-compact set; Schur property},
language = {eng},
number = {4},
pages = {431-443},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Some results on the class of $\sigma $-unbounded Dunford-Pettis operators},
url = {http://eudml.org/doc/298136},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Hafidi, Noufissa
AU - H'michane, Jawad
TI - Some results on the class of $\sigma $-unbounded Dunford-Pettis operators
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 431
EP - 443
AB - We introduce and study the class of unbounded Dunford--Pettis operators. As consequences, we give basic properties and derive interesting results about the duality, domination problem and relationship with other known classes of operators.
LA - eng
KW - $\sigma $-un-Dunford–Pettis operator; unbounded norm convergence; order continuous Banach lattice; atomic Banach lattice; relatively sequentially un-compact set; Schur property
UR - http://eudml.org/doc/298136
ER -
References
top- Aliprantis C. D., Burkinshaw O., Positive Operators, reprint of the 1985 original, Springer, Dordrecht, 2006. Zbl1098.47001MR2262133
- Aqzzouz B., Elbour A., H'michane J., 10.1007/s11117-008-2288-6, Positivity 13 (2009), no. 4, 683–692. MR2538515DOI10.1007/s11117-008-2288-6
- Aqzzouz B., H'michane J., 10.21136/MB.2009.140668, Math. Bohem. 134 (2009), no. 4, 359–367. MR2597231DOI10.21136/MB.2009.140668
- Deng Y., O’Brien M., Troitsky V. G., 10.1007/s11117-016-0446-9, Positivity 21 (2017), no. 3, 963–974. MR3688941DOI10.1007/s11117-016-0446-9
- Gao N., 10.1016/j.jmaa.2014.04.067, J. Math. Anal. Appl. 419 (2014), no. 1, 347–354. MR3217153DOI10.1016/j.jmaa.2014.04.067
- Gao N., Xanthos F., 10.1016/j.jmaa.2014.01.078, J. Math. Anal. Appl. 415 (2014), no. 2, 931–947. MR3178299DOI10.1016/j.jmaa.2014.01.078
- Kandić M., Li H., Troitsky V. G., 10.1007/s11117-017-0541-6, Positivity 22 (2018), no. 3, 745–760. MR3817116DOI10.1007/s11117-017-0541-6
- Kandić M., Marabeh M. A. A., Troitsky V. G., 10.1016/j.jmaa.2017.01.041, J. Math. Anal. Appl. 451 (2017), no. 1, 259–279. MR3619237DOI10.1016/j.jmaa.2017.01.041
- Meyer-Nieberg P., Banach Lattices, Universitext, Springer, Berlin, 1991. Zbl0743.46015MR1128093
- Nakano H., 10.2307/1969044, Ann. of Math. (20) 49 (1948), no. 2, 538–556. MR0029112DOI10.2307/1969044
- Wang Z., Chen Z., Chen J., Continuous operators for unbounded convergence in Banach lattices, available at arXiv:1903.04854 [math.FA] (2021), 9 pages. MR4293863
- Wickstead A. W., 10.1017/S1446788700020346, J. Austral. Math. Soc. Ser. A 24 (1977), no. 3, 312–319. MR0482060DOI10.1017/S1446788700020346
- Zaanen A. C., Riesz Spaces. II, North-Holland Mathematical Library, 30, North-Holland Publishing Company, Amsterdam, 1983. MR0704021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.