On the constructions of t-norms and t-conorms on some special classes of bounded lattices

Emel Aşıcı

Kybernetika (2021)

  • Issue: 2, page 352-371
  • ISSN: 0023-5954

Abstract

top
Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples.

How to cite

top

Aşıcı, Emel. "On the constructions of t-norms and t-conorms on some special classes of bounded lattices." Kybernetika (2021): 352-371. <http://eudml.org/doc/298154>.

@article{Aşıcı2021,
abstract = {Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples.},
author = {Aşıcı, Emel},
journal = {Kybernetika},
keywords = {t-norm; t-conorm; ordinal sum; bounded lattice},
language = {eng},
number = {2},
pages = {352-371},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On the constructions of t-norms and t-conorms on some special classes of bounded lattices},
url = {http://eudml.org/doc/298154},
year = {2021},
}

TY - JOUR
AU - Aşıcı, Emel
TI - On the constructions of t-norms and t-conorms on some special classes of bounded lattices
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 352
EP - 371
AB - Recently, the topic related to the construction of triangular norms and triangular conorms on bounded lattices using ordinal sums has been extensively studied. In this paper, we introduce a new ordinal sum construction of triangular norms and triangular conorms on an appropriate bounded lattice. Also, we give some illustrative examples for clarity. Then, we show that a new construction method can be generalized by induction to a modified ordinal sum for triangular norms and triangular conorms on an appropriate bounded lattice, respectively. And we provide some illustrative examples.
LA - eng
KW - t-norm; t-conorm; ordinal sum; bounded lattice
UR - http://eudml.org/doc/298154
ER -

References

top
  1. Aşıcı, E., , Kybernetika 55 (2019), 217-232. MR4014584DOI
  2. Aşıcı, E., , Hacet. J. Math. Stat. 357 (2019), 2-26. MR3974553DOI
  3. Aşıcı, E., Mesiar, R., , Int. J. Gen. Systems 49 (2020), 143-160. MR4074092DOI
  4. Aşıcı, E., Mesiar, R., , Iran. J. Fuzzy Syst. 17 (2020), 121-138. MR4155854DOI
  5. Aşıcı, E., Mesiar, R., , Fuzzy Sets Syst. 408 (2021), 65-85. MR4210984DOI
  6. Aşıcı, E., Karaçal, F., , Inform. Sci. 267 (2014), 323-333. MR3177320DOI
  7. Bedregal, B., Reiser, R., Bustince, H., Lopez-Molina, C., Torra, V., , Inform. Sci. 255 (2014), 1, 82-99. MR3117131DOI
  8. Birkhoff, G., Lattice Theory. Third edition., Providence, 1967. MR0227053
  9. Clifford, A., , Amer. J. Math. 76 (1954), 631-646. MR0062118DOI
  10. Çaylı, G. D., , Appl. Math. Comput. 366 (2020). MR4011595DOI
  11. Çaylı, G. D., , Kybernetika 55 (2019), 273-294. MR4014587DOI
  12. Çaylı, G. D., , Inform. Sci. 488 (2019), 111-139. MR3924420DOI
  13. Çaylı, G. D., , Fuzzy Sets Syst. 332 (2018), 129-143. MR3732255DOI
  14. Dan, Y., Hu, B. Q., Qiao, J., , Fuzzy Sets Syst. 395 (2020), 40-70. MR4109061DOI
  15. Dvořák, A., Holčapek, M., , Inform. Sci. 515 (2020), 116-131. MR4042588DOI
  16. Ertuğrul, Ü., Karaçal, F., Mesiar, R., , Int. J. Intell. Syst. 30 (2015), 807-817. DOI
  17. Goguen, J. A., , J. Math. Anal. Appl. 18 (1967), 145-174. MR0224391DOI
  18. İnce, M. A., Karaçal, F., Mesiar, R., , Fuzzy Sets Syst. 289 (2016), 74-81. MR3454462DOI
  19. Karaçal, F., İnce, M. A., Mesiar, R., , Inform. Sci. 325 (2015), 227-235. MR3392300DOI
  20. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  21. Medina, J., , Fuzzy Sets Syst. 202 (2012), 75-88. MR2934787DOI
  22. Mostert, P. S., Shields, A. L., , Ann. Math., II. Ser. 65 (1957), 117-143. MR0084103DOI
  23. Ouyang, Y., Zhang, H-P., Baets, B. D., , Fuzzy Sets Syst. 408 (2021), 1-12. MR4210979DOI
  24. Rodriguez, R. M., Martinez, L., Herrera, F., , IEEE Trans. Fuzzy Syst. 20 (2012), 2, 109-119. DOI
  25. Rodriguez, R. M., Martinez, L., Herrera, F., , Inform. Sci. 241 (2013), 28-42. MR3064113DOI
  26. Rodriguez, R. M., Martinez, L., Torra, V., Xu, Z. S., Herrera, F., , Int. J. Intell. Syst. 29 (2014), 6, 495-524. DOI
  27. Saminger, S., On ordinal sums of triangular norms on bounded lattices., Fuzzy Sets Syst. 325 (2006), 1403-1416. Zbl1099.06004MR2226983
  28. Schweizer, B., Sklar, A., , Pacific J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI
  29. Torra, V., , Int. J. Intell. Syst. 25 (2010), 529-539. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.