Some methods to obtain t-norms and t-conorms on bounded lattices
Kybernetika (2019)
- Volume: 55, Issue: 2, page 273-294
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topÇaylı, Gül Deniz. "Some methods to obtain t-norms and t-conorms on bounded lattices." Kybernetika 55.2 (2019): 273-294. <http://eudml.org/doc/294262>.
@article{Çaylı2019,
abstract = {In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice $L$ based on a priori given t-norm acting on $ [a,1]$ and t-conorm acting on $[0,a]$ for an arbitrary element $a\in L\backslash \lbrace 0,1\rbrace $. We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice.},
author = {Çaylı, Gül Deniz},
journal = {Kybernetika},
keywords = {bounded lattice; t-norm; t-conorm; ordinal sum},
language = {eng},
number = {2},
pages = {273-294},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Some methods to obtain t-norms and t-conorms on bounded lattices},
url = {http://eudml.org/doc/294262},
volume = {55},
year = {2019},
}
TY - JOUR
AU - Çaylı, Gül Deniz
TI - Some methods to obtain t-norms and t-conorms on bounded lattices
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 273
EP - 294
AB - In this study, we introduce new methods for constructing t-norms and t-conorms on a bounded lattice $L$ based on a priori given t-norm acting on $ [a,1]$ and t-conorm acting on $[0,a]$ for an arbitrary element $a\in L\backslash \lbrace 0,1\rbrace $. We provide an illustrative example to show that our construction methods differ from the known approaches and investigate the relationship between them. Furthermore, these methods are generalized by iteration to an ordinal sum construction for t-norms and t-conorms on a bounded lattice.
LA - eng
KW - bounded lattice; t-norm; t-conorm; ordinal sum
UR - http://eudml.org/doc/294262
ER -
References
top- Aşıcı, E., Karaçal, F., 10.14736/kyb-2016-1-0015, Kybernetika 52 (2016), 1, 15-27. MR3482608DOI10.14736/kyb-2016-1-0015
- Aşıcı, E., 10.1016/j.fss.2017.11.008, Fuzzy Sets and Systems 346 (2018), 72-84. MR3812758DOI10.1016/j.fss.2017.11.008
- Aşıcı, E., 10.14736/kyb-2019-2-0217, Kybernetika 55 (2019), 2, 217-232. DOI10.14736/kyb-2019-2-0217
- Birkhoff, G., 10.1090/coll/025, American Mathematical Society Colloquium Publ., Providence 1967. Zbl0537.06001MR0227053DOI10.1090/coll/025
- Butnariu, D., Klement, E. P., 10.1007/978-94-017-3602-2, Kluwer Academic Publishers, Dordrecht 1993. MR2867321DOI10.1007/978-94-017-3602-2
- Clifford, A., 10.2307/2372706, Am. J. Math. 76 (1954), 631-646. MR0062118DOI10.2307/2372706
- Çaylı, G. D., Karaçal, F., Mesiar, R., 10.1016/j.ins.2016.05.036, Inform. Sci. 367-368 (2016), 221-231. MR3684677DOI10.1016/j.ins.2016.05.036
- Çaylı, G. D., Karaçal, F., 10.14736/kyb-2017-3-0394, Kybernetika 53 (2017), 3, 394-417. MR3684677DOI10.14736/kyb-2017-3-0394
- Çaylı, G. D., 10.1007/978-3-319-66830-7_40, In: Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing (J. Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak, eds.), vol. 641 Springer, Cham 2018, pp. 443-454. DOI10.1007/978-3-319-66830-7_40
- Çaylı, G. D., 10.1016/j.fss.2017.07.015, Fuzzy Sets and Systems 332 (2018), 129-143. MR3732255DOI10.1016/j.fss.2017.07.015
- Çaylı, G. D., 10.1016/j.fss.2018.07.012, Fuzzy Sets and Systems 357 (2019), 2-26. MR3913056DOI10.1016/j.fss.2018.07.012
- Deschrijver, G., Kerre, E. E., 10.1016/j.fss.2003.12.006, Fuzzy Sets and Systems 148 (2004), 243-262. MR2100198DOI10.1016/j.fss.2003.12.006
- Drossos, C. A., Navara, M., Generalized t-conorms and closure operators., In: EUFIT 96, Aachen 1996.
- Drossos, C. A., 10.1016/s0165-0114(98)00258-9, Fuzzy Sets Systems 104 (1999), 53-59. MR1685809DOI10.1016/s0165-0114(98)00258-9
- Drygaś, P., 10.1016/j.fss.2009.09.017, Fuzzy Sets and Systems 161 (2010), 149-157. Zbl1191.03039MR2566236DOI10.1016/j.fss.2009.09.017
- Esteva, F., Godo, L., 10.1016/s0165-0114(01)00098-7, Fuzzy Sets and Systems 124 (2001), 271-288. MR1860848DOI10.1016/s0165-0114(01)00098-7
- Ertuğrul, Ü., Karaçal, F., Mesiar, R., 10.1002/int.21713, Int. J. Intell. Systems 30 (2015), 807-817. DOI10.1002/int.21713
- Goguen, J. A., 10.1016/0022-247x(67)90189-8, J. Math. Anal. Appl. 18 (1967), 145-174. MR0224391DOI10.1016/0022-247x(67)90189-8
- Goguen, J. A., 10.1016/0022-247x(73)90288-6, J. Math. Anal. Appl. 43 (1973), 734-742. MR0341365DOI10.1016/0022-247x(73)90288-6
- Grabisch, M., Nguyen, H. T., Walker, E. A., Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference., Kluwer Academic Publishers, Dordrecht 1995. MR1472733
- Höhle, U., 10.1007/bf01167724, Manuscr. Math. 26 (1978), 223-245. MR0515397DOI10.1007/bf01167724
- Höhle, U., Commutative, residuated SOH-monoids, Non-classical logics and their applications to fuzzy subsets., In: A handbook of the mathematical foundations of fuzzy set theory, theory and decision library series B: mathematical and statistical methods (K. Höhle, ed.), vol. 32. The Netherlands Kluwer, Dordrecht 1995. MR1345641
- Klement, E. P., Mesiar, R., Pap, E., 10.1007/978-94-015-9540-7, Kluwer Acad. Publ., Dordrecht 2000. Zbl1087.20041MR1790096DOI10.1007/978-94-015-9540-7
- Medina, J., 10.1016/j.fss.2012.03.002, Fuzzy Sets and Systems 202 (2012), 75-88. MR2934787DOI10.1016/j.fss.2012.03.002
- Saminger, S., 10.1016/j.fss.2005.12.021, Fuzzy Sets and Systems 157 (2006), 10, 1403-1416. Zbl1099.06004MR2226983DOI10.1016/j.fss.2005.12.021
- Schweizer, B., Sklar, A., Probabilistic Metric Spaces., North-Holland, New York 1983. Zbl0546.60010MR0790314
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.