On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials

Cong Nhan Le; Xuan Truong Le

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 33-49
  • ISSN: 0862-7959

Abstract

top
We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution.

How to cite

top

Le, Cong Nhan, and Le, Xuan Truong. "On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials." Mathematica Bohemica 147.1 (2022): 33-49. <http://eudml.org/doc/298217>.

@article{Le2022,
abstract = {We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution.},
author = {Le, Cong Nhan, Le, Xuan Truong},
journal = {Mathematica Bohemica},
keywords = {Nehari manifold; fibrering maps; vanishing potential; logarithmic nonlinearity},
language = {eng},
number = {1},
pages = {33-49},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials},
url = {http://eudml.org/doc/298217},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Le, Cong Nhan
AU - Le, Xuan Truong
TI - On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 33
EP - 49
AB - We study a class of logarithmic fractional Schrödinger equations with possibly vanishing potentials. By using the fibrering maps and the Nehari manifold we obtain the existence of at least one nontrivial solution.
LA - eng
KW - Nehari manifold; fibrering maps; vanishing potential; logarithmic nonlinearity
UR - http://eudml.org/doc/298217
ER -

References

top
  1. Alves, C. O., Souto, M. A. S., 10.1016/j.jde.2012.01.025, J. Differ. Equations 252 (2012), 5555-5568 9999DOI99999 10.1016/j.jde.2012.01.025 . (2012) Zbl1250.35103MR2902126DOI10.1016/j.jde.2012.01.025
  2. Alves, C. O., Souto, M. A. S., Existence of solutions for a class of nonlinear Schrödinger equations with potential vanishing at infinity, J. Differ. Equations 254 (2013), 1977-1991 9999DOI99999 10.1016/j.jde.2012.11.013 . (2013) Zbl1263.35076MR3003299
  3. Ambrosetti, A., Malchiodi, A., 10.1017/CBO9780511618260, Cambridge Studies in Advanced Mathematics 104. Cambridge University Press, Cambridge (2007). (2007) Zbl1125.47052MR2292344DOI10.1017/CBO9780511618260
  4. Ambrosetti, A., Wang, Z.-Q., Nonlinear Schrödinger equations with vanishing and decaying potentials, Differ. Integral Equ. 18 (2005), 1321-1332 9999MR99999 2174974 . (2005) Zbl1210.35087MR2174974
  5. Ardila, A. H., Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity, Nonlinear Anal., Theory Methods Appl. 155 (2017), 52-64 9999DOI99999 10.1016/j.na.2017.01.006 . (2017) Zbl1368.35242MR3631741
  6. Benci, V., Grisanti, C. R., Micheletti, A. M., Existence of solutions for the nonlinear Schrödinger equation with V ( ) = 0 , Contributions to Nonlinear Analysis Progress in Nonlinear Differential Equations and Their Applications 66. Birkhäuser, Basel (2006), 53-65 9999DOI99999 10.1007/3-7643-7401-24 . (2006) Zbl1231.35225MR2187794
  7. Berestycki, H., Lions, P.-L., Nonlinear scalar field equations. I: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313-345 9999DOI99999 10.1007/BF00250555 . (1983) Zbl0533.35029MR0695535
  8. Bia{ł}ynicki-Birula, I., Mycielski, J., Nonlinear wave mechanics, Ann. Phys. 100 (1976), 62-93 9999DOI99999 10.1016/0003-4916(76)90057-9 . (1976) MR0426670
  9. Brown, K. J., Zhang, Y., The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function, J. Differ. Equations 193 (2003), 481-499 9999DOI99999 10.1016/S0022-0396(03)00121-9 . (2003) Zbl1074.35032MR1998965
  10. Caffarelli, L., Non-local diffusions, drifts and games, Nonlinear Partial Differential Equations: The Abel symposium 2010 Abel Symposia 7. Springer, Berlin (2012), 37-52 9999DOI99999 10.1007/978-3-642-25361-43 . (2012) Zbl1266.35060MR3289358
  11. Campa, I., Degiovanni, M., Subdifferential calculus and nonsmooth critical point theory, SIAM J. Optim. 10 (2000), 1020-1048 9999DOI99999 10.1137/S1052623499353169 . (2000) Zbl1042.49018MR1777078
  12. Cazenave, T., 10.1016/0362-546X(83)90022-6, Nonlinear Anal., Theory Methods Appl. 7 (1983), 1127-1140. (1983) Zbl0529.35068MR0719365DOI10.1016/0362-546X(83)90022-6
  13. Cazenave, T., Haraux, A., Équations d'évolution avec non linéarité logarithmique, Ann. Fac. Sci. Toulouse, Math. (5) 2 (1980), 21-51 French 9999DOI99999 10.5802/afst.543 . (1980) Zbl0411.35051MR0583902
  14. Chang, X., Ground state solutions of asymptotically linear fractional Schrödinger equations, J. Math. Phys. 54 (2013), Article ID 061504, 10 pages 9999DOI99999 10.1063/1.4809933 . (2013) Zbl1282.81072MR3112523
  15. Chen, W., Deng, S., 10.1007/s00033-014-0486-6, Z. Angew. Math. Phys. 66 (2015), 1387-1400. (2015) Zbl1321.35253MR3377693DOI10.1007/s00033-014-0486-6
  16. Cheng, M., Bound state for the fractional Schrödinger equation with unbounded potential, J. Math. Phys. 53 (2012), Article ID 043507, 7 pages 9999DOI99999 10.1063/1.3701574 . (2012) Zbl1275.81030MR2953151
  17. Corvellec, J.-N., Degiovanni, M., Marzocchi, M., Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), 151-171 9999DOI99999 10.12775/TMNA.1993.012 . (1993) Zbl0789.58021MR1215263
  18. D'Avenia, P., Montefusco, E., Squassina, M., On the logarithmic Schrödinger equation, Commun. Contemp. Math. 16 (2014), Article ID 1350032, 15 pages 9999DOI99999 10.1142/S0219199713500326 . (2014) Zbl1292.35259MR3195154
  19. Degiovanni, M., Zani, S., 10.1016/S0895-7177(00)00211-9, Math. Comput. Modelling 32 (2000), 1377-1393. (2000) Zbl0970.35038MR1800662DOI10.1016/S0895-7177(00)00211-9
  20. Nezza, E. Di, Palatucci, G., Valdinoci, E., Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573 9999DOI99999 10.1016/j.bulsci.2011.12.004 . (2012) Zbl1252.46023MR2944369
  21. Drábek, P., Pohozaev, S. I., Positive solutions for the p -Laplacian: Application of the fibrering method, Proc. R. Soc. Edinb., Sect. A 127 (1997), 703-726 9999DOI99999 10.1017/S0308210500023787 . (1997) Zbl0880.35045MR1465416
  22. Furtado, M. F., Maia, L. A., Medeiros, E. S., Positive and nodal solutions for a nonlinear Schrödinger equation with indefinite potential, Adv. Nonlinear Stud. 8 (2008), 353-373 9999DOI99999 10.1515/ans-2008-0207 . (2008) Zbl1168.35433MR2402826
  23. Hefter, E. F., Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics, Phys. Rev. 32(A) (1985), 1201-1204 9999DOI99999 10.1103/PhysRevA.32.1201 . (1985) 
  24. Ji, C., Szulkin, A., 10.1016/j.jmaa.2015.11.071, J. Math. Anal. Appl. 437 (2016), 241-254. (2016) Zbl1333.35010MR3451965DOI10.1016/j.jmaa.2015.11.071
  25. Khoutir, S., Chen, H., Existence of infinitely many high energy solutions for a fractional Schrödinger equation in N , Appl. Math. Lett. 61 (2016), 156-162 9999DOI99999 10.1016/j.aml.2016.06.001 . (2016) Zbl1386.35444MR3518463
  26. Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett., A 268 (2000), 298-305 9999DOI99999 10.1016/S0375-9601(00)00201-2 . (2000) Zbl0948.81595MR1755089
  27. Laskin, N., Fractional Schrödinger equation, Phys. Rev. E (3) 66 (2002), Article ID 056108, 7 pages 9999DOI99999 10.1103/PhysRevE.66.056108 . (2002) MR1948569
  28. Perera, K., Squassina, M., Yang, Y., Critical fractional p -Laplacian problems with possibly vanishing potentials, J. Math. Anal. Appl. 433 (2016), 818-831 9999DOI99999 10.1016/j.jmaa.2015.08.024 . (2016) Zbl1403.35319MR3398738
  29. Secchi, S., Ground state solutions for nonlinear fractional Schrödinger equations in N , J. Math. Phys. 54 (2013), Article ID 031501, 17 pages 9999DOI99999 10.1063/1.4793990 . (2013) Zbl1281.81034MR3059423
  30. Shang, X., Zhang, J., Ground states for fractional Schrödinger equations with critical growth, Nonlinearity 27 (2014), 187-207 9999DOI99999 10.1088/0951-7715/27/2/187 . (2014) Zbl1287.35027MR3153832
  31. Shang, X., Zhang, J., Yang, Y., 10.1063/1.4835355, J. Math. Phys. 54 (2013), Article ID 121502, 20 pages. (2013) Zbl1290.35251MR3156081DOI10.1063/1.4835355
  32. Squassina, M., Szulkin, A., 10.1007/s00526-014-0796-8, Calc. Var. Partial Differ. Equ. 54 (2015), 585-597. (2015) Zbl1326.35358MR3385171DOI10.1007/s00526-014-0796-8
  33. Szulkin, A., Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109 9999DOI99999 10.1016/S0294-1449(16)30389-4 . (1986) Zbl0612.58011MR0837231
  34. Teng, K., Multiple solutions for a class of fractional Schrödinger equations in N , Nonlinear Anal., Real World Appl. 21 (2015), 76-86 9999DOI99999 10.1016/j.nonrwa.2014.06.008 . (2015) Zbl1302.35415MR3261580
  35. Ledesma, C. E. Torres, 10.3934/cpaa.2017004, Commun. Pure Appl. Anal. (2017), 16 99-113. (2017) Zbl1364.35426MR3583517DOI10.3934/cpaa.2017004
  36. Zloshchastiev, K. G., 10.1134/S0202289310040067, Grav. Cosmol. 16 (2010), 288-297. (2010) Zbl1232.83044MR2740900DOI10.1134/S0202289310040067

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.