Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems
Annales de l'I.H.P. Analyse non linéaire (1986)
- Volume: 3, Issue: 2, page 77-109
- ISSN: 0294-1449
Access Full Article
topHow to cite
topSzulkin, Andrzej. "Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems." Annales de l'I.H.P. Analyse non linéaire 3.2 (1986): 77-109. <http://eudml.org/doc/78110>.
@article{Szulkin1986,
author = {Szulkin, Andrzej},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {minimax principles; Lusternik-Schnirelman theory; convex functions; critical points; Ekeland's variational principle},
language = {eng},
number = {2},
pages = {77-109},
publisher = {Gauthier-Villars},
title = {Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems},
url = {http://eudml.org/doc/78110},
volume = {3},
year = {1986},
}
TY - JOUR
AU - Szulkin, Andrzej
TI - Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1986
PB - Gauthier-Villars
VL - 3
IS - 2
SP - 77
EP - 109
LA - eng
KW - minimax principles; Lusternik-Schnirelman theory; convex functions; critical points; Ekeland's variational principle
UR - http://eudml.org/doc/78110
ER -
References
top- [1] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Func. Anal., t. 14, 1973, p. 349-381. Zbl0273.49063MR370183
- [2] J.P. Aubin and I. Ekeland, Applied Nonlinear Anahlsis. Wiley, New York, 1984. Zbl0641.47066MR749753
- [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Academiei. Bucarest and Nordhoff, Leyden, 1976. Zbl0328.47035MR390843
- [4] H. Brézis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam, 1973. Zbl0252.47055MR348562
- [5] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Contributions to Nonlinear Functional Analysis. E. Zarantanello ed., Academic Press, New York, 1971, p. 101-156. Zbl0278.47033MR394323
- [6] H. Brézis, Some variational problems with lack of compactness, Proc. of the 1983 AMS Summer Institute on Nonl. Func. Anal. and Appl., Amer. Math. Soc. (to appear). Zbl0617.35041MR843559
- [7] H. Brézis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Norm. Sup. Pisa, Ser. IV, t. 5, 1978, p. 225-326. Zbl0386.47035MR513090
- [8] K.C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl., t. 80, 1981, p. 102-129. Zbl0487.49027MR614246
- [9] D.C. Clark, A variant of the Ljusternik-Schnirelmann theory. Indiana Univ. Math. J., t. 22, 1972, p. 65-74. Zbl0228.58006MR296777
- [10] J.P. Dias, Variational inequalities and eigenvalue problems for nonlinear maximal monotone operators in a Hilbert space. Amer. J. Math., t. 97, 1975, p. 905-914. Zbl0319.47040MR420354
- [11] J.P. Dias and J. Hernández, A Sturm-Liouville theorem for some odd multivalued maps. Proc. Amer. Math. Soc., t. 53, 1975, p. 72-74. Zbl0285.47037MR377632
- [12] G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer, Berlin, 1976. Zbl0331.35002MR521262
- [13] I. Ekeland, Nonconvex minimization problems. Bull. Amer. Math. Soc., t. 1, 1979, p. 443-474. Zbl0441.49011MR526967
- [14] D. G. de FIGUEIREDO and S. Solimini, A variational approach to superlinear elliptic problems. Comm. P. D. E., t. 9, 1984, p. 699-717. Zbl0552.35030MR745022
- [15] L.I. Hedberg, Spectral synthesis and stability in Sobolev spaces. Springer Lecture Notes in Mathematics, t. 779, 1980, p. 73-103. Zbl0469.31003MR576040
- [16] S.T. Hu, Homotopy Theory, Academic Press, New York, 1959. Zbl0088.38803MR106454
- [17] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications. Academic Press, New York, 1980. Zbl0457.35001MR567696
- [18] K. Kuratowski, Topologie I, PWN, Warsaw, 1958. Zbl0078.14603
- [19] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations. J. Diff. Eq., t. 52, 1984, p. 264- 287. Zbl0557.34036MR741271
- [20] L. Nirenberg, Variational and topological methods in nonlinear problems. Bull. Amer. Math. Soc., t. 4, 1981, p. 267-302. Zbl0468.47040MR609039
- [21] P.H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Proc. Sym. on Eigenvalues of Nonlinear Problems. Edizioni Cremonese, Rome, 1974, p. 143-195. MR464299
- [22] P.H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations. In: Nonlinear Analysis, A collection of papers in honor of E. Rothe, L. Cesari, R. Kannan and H. F. Weinberger ed., Academic Press, New York, 1978, p. 161-177. Zbl0466.58015MR501092
- [23] P.H. Rabinowitz, Some critical point theorems and applications to semilinear elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, Ser. IV, t. 5, 1978, p. 215-223. Zbl0375.35026MR488128
- [24] P.H. Rabinowitz, Some aspects of critical point theory, MRC Tech. Rep. # 2465, Madison, Wisconsin, 1983.
- [25] J.T. Schwartz, Nonlinear Functional Analysis. Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
- [26] M. Struwe, Multiple solutions of differential equations without the Palais-Smale condition. Math. Ann., t. 261, 1982, p. 399-412. Zbl0506.35034MR679798
- [27] M. Struwe, Generalized Palais-Smale conditions and applications. Vorlesungsreihe SFB # 17, Bonn, 1983. Zbl0534.58021
- [28] I. Ekeland and J.M. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface. Ann. Math., t. 112, 1980, p. 283-319. Zbl0449.70014MR592293
Citations in EuDML Documents
top- Nikolaos Halidias, Nikolaos S. Papageorgiou, Quasilinear elliptic problems with multivalued terms
- Pavol Quittner, On positive solutions of semilinear elliptic problems
- Nikolaos S. Papageorgiou, Nikolaos Yannakakis, Multiple solutions for nonlinear periodic problems with discontinuities
- Jean Mawhin, Nonlinear boundary value problems involving the extrinsic mean curvature operator
- Cong Nhan Le, Xuan Truong Le, On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials
- Giovanni Mancini, Roberta Musina, Holes and obstacles
- Andrzej Szulkin, Ljusternik-Schnirelmann theory on -manifolds
- Yang Jianfu, Positive solutions of an obstacle problem
- Gianni Arioli, Filippo Gazzola, Weak solutions of quasilinear elliptic PDE's at resonance
- Dumitru Motreanu, A saddle point approach to nonlinear eigenvalue problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.