Équations d'évolution avec non linéarité logarithmique
Thierry Cazenave; Alain Haraux
Annales de la Faculté des sciences de Toulouse : Mathématiques (1980)
- Volume: 2, Issue: 1, page 21-51
- ISSN: 0240-2963
Access Full Article
topHow to cite
topReferences
top- [1] J.B. Baillon, T. Cazenave, M. Figueira. «Equation de Schrödinger non linéaire». C.R. Acad. Sc.Paris, 284 (1977) p. 869-872. Zbl0349.35048MR433025
- [2] I. Bialynicki-Birula, J. Mycielski. «Wave Equations with Logarithmic Non-linearities». Bull. Acad. Pol. Sc., XXIII (1975) p. 461-466. MR403458
- [3] I. Bialynicki-Birula, J. Mycielski. «Nonlinear Wave Mechanics». Annals of Physics, 100 (1976) p. 62-93. MR426670
- [4] H. Brezis. «Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert». North-Holland Publish Co, Amsterdam, London (1973). Zbl0252.47055MR348562
- [5] H. Brezis, T. Kato. «Remarks on the Schrödinger Operator with Singular Complex Potentials». J. Math. Pures. Appl.58 (1979) p. 137-151. Zbl0408.35025MR539217
- [6] F.E. Browder. «On Non-Linear Wave Equations». Math. Zeitschr.80 (1962) p. 249-264. Zbl0109.32102MR147769
- [7] T. Cazenave. «Equations de Schrödinger Non Linéaires». Proc. Roy. Soc. Edinburgh (1969)84 (1979) p. 327-346. Zbl0428.35021MR559676
- [8] T. Cazenave, A. Haraux. «Equations de Schrödinger avec Non Linéarité Logarithmique». C.R. Acad. Sc.Paris, 288 (1979) p. 253-256. Zbl0406.35013MR524786
- [9] R. Cou Rant, D. Hilbert. «Methods of Mathematical Physics». Volume II, Inter-science Publish.New-York, London (1962). Zbl0099.29504MR65391
- [10] J. Ginibre, G. Velo. «On a class of Non Linear Schrödinger Equations». J. Funct. Anal.32 (1979) p. 1-71. Zbl0396.35028MR533219
- [11] J.L. Lions. «Quelques Méthodes de Résolution de Problèmes aux Limites Non-Linéaires». Gauthier-Villars, Paris (1969). Zbl0189.40603MR259693
Citations in EuDML Documents
top- E. Zuazua, Exact controllability for semilinear wave equations in one space dimension
- Piermarco Cannarsa, Vilmos Komornik, Paola Loreti, Well posedness and control of semilinear wave equations with iterated logarithms
- Ph. Blanchard, J. Stubbe, L. Vázquez, On the stability of solitary waves for classical scalar fields
- Piermarco Cannarsa, Vilmos Komornik, Paola Loreti, Well posedness and control of semilinear wave equations with iterated logarithms
- Cong Nhan Le, Xuan Truong Le, On the Nehari manifold for a logarithmic fractional Schrödinger equation with possibly vanishing potentials
- Enrique Fernández-Cara, Enrique Zuazua, Null and approximate controllability for weakly blowing up semilinear heat equations
- José Luis López, Jesús Montejo–Gámez, On the derivation and mathematical analysis of some quantum–mechanical models accounting for Fokker–Planck type dissipation: Phase space, Schrödinger and hydrodynamic descriptions
- Makoto Nakamura, Tohru Ozawa, Small data scattering for nonlinear Schrödinger wave and Klein-Gordon equations