Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem

Papri Majumder

Applications of Mathematics (2021)

  • Volume: 66, Issue: 5, page 673-699
  • ISSN: 0862-7940

Abstract

top
We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in d ( d = 2 , 3 ) . For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order 𝒪 ( h + Δ t ) in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity u t 2 ( 0 , T ; 2 ( Ω ) ) is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.

How to cite

top

Majumder, Papri. "Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem." Applications of Mathematics 66.5 (2021): 673-699. <http://eudml.org/doc/298218>.

@article{Majumder2021,
abstract = {We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in $\mathbb \{R\}^d$$(d=2,3)$. For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order $\mathcal \{O\}(h+\Delta t)$ in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity $u_t\in \mathcal \{L\}^2(0,T; \mathcal \{L\}^2(\Omega ))$ is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.},
author = {Majumder, Papri},
journal = {Applications of Mathematics},
keywords = {finite element; discontinuous Galerkin method; parabolic obstacle problem},
language = {eng},
number = {5},
pages = {673-699},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem},
url = {http://eudml.org/doc/298218},
volume = {66},
year = {2021},
}

TY - JOUR
AU - Majumder, Papri
TI - Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 673
EP - 699
AB - We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in $\mathbb {R}^d$$(d=2,3)$. For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order $\mathcal {O}(h+\Delta t)$ in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity $u_t\in \mathcal {L}^2(0,T; \mathcal {L}^2(\Omega ))$ is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.
LA - eng
KW - finite element; discontinuous Galerkin method; parabolic obstacle problem
UR - http://eudml.org/doc/298218
ER -

References

top
  1. Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
  2. Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
  3. Babuška, I., Zlámal, M., 10.1137/0710071, SIAM J. Numer. Anal. 10 (1973), 863-875. (1973) Zbl0237.65066MR0345432DOI10.1137/0710071
  4. Banz, L., Stephan, E. P., 10.1016/j.camwa.2013.03.003, Comput. Math. Appl. 67 (2014), 712-731. (2014) Zbl1350.65064MR3163875DOI10.1016/j.camwa.2013.03.003
  5. Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M., A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics R. Decuypere, G. Dibelius Technologisch Instituut, Antwerpen (1997), 99-108. (1997) 
  6. Berger, A. E., Falk, R. S., 10.1090/S0025-5718-1977-0438707-8, Math. Comput. 31 (1977), 619-628. (1977) Zbl0367.65056MR0438707DOI10.1090/S0025-5718-1977-0438707-8
  7. Brenner, S. C., Owens, L., Sung, L.-Y., A weakly over-penalized symmetric interior penalty method, ETNA, Electron. Tran. Numer. Anal. 30 (2008), 107-127. (2008) Zbl1171.65077MR2480072
  8. Brézis, H., Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1-168 French. (1972) Zbl0237.35001MR0428137
  9. Brézis, H., 10.1016/s0304-0208(08)x7125-7, North-Holland Mathematics Studies 5. North-Holland, Amsterdam (1973), French. (1973) Zbl0252.47055MR0348562DOI10.1016/s0304-0208(08)x7125-7
  10. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A., Discontinuous finite elements for diffusion problems, Francesco Brioschi (1824-1897) Convegno di Studi Matematici Istituto Lombardo, Accademia di Scienze e Lettere, Milan (1999), 197-217. (1999) 
  11. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A., 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y, Numer. Methods Partial Differ. Equations 16 (2000), 365-378. (2000) Zbl0957.65099MR1765651DOI10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
  12. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D., 10.1137/S0036142900371003, SIAM J. Numer. Anal. 38 (2000), 1676-1706. (2000) Zbl0987.65111MR1813251DOI10.1137/S0036142900371003
  13. Česenek, J., Feistauer, M., 10.1137/110828903, SIAM J. Numer. Anal. 50 (2012), 1181-1206. (2012) Zbl1312.65157MR2970739DOI10.1137/110828903
  14. Chen, Z., Nochetto, R. H., 10.1007/s002110050009, Numer. Math. 84 (2000), 527-548. (2000) Zbl0943.65075MR1742264DOI10.1007/s002110050009
  15. Ciarlet, P. G., 10.1137/1.9780898719208, Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174DOI10.1137/1.9780898719208
  16. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D., 10.1137/S0036142900371544, SIAM J. Numer. Anal. 39 (2001), 264-285. (2001) Zbl1041.65080MR1860725DOI10.1137/S0036142900371544
  17. Cockburn, B., Shu, C.-W., 10.1137/S0036142997316712, SIAM J. Numer. Anal. 35 (1998), 2440-2463. (1998) Zbl0927.65118MR1655854DOI10.1137/S0036142997316712
  18. Fetter, A., 10.1007/BF01408576, Numer. Math. 50 (1987), 557-565. (1987) Zbl0617.65064MR0880335DOI10.1007/BF01408576
  19. Girault, V., Riviére, B., Wheeler, M. F., 10.1090/S0025-5718-04-01652-7, Math. Comput. 74 (2005), 53-84. (2005) Zbl1057.35029MR2085402DOI10.1090/S0025-5718-04-01652-7
  20. Glowinski, R., Lions, J.-L., Trémolières, R., 10.1016/s0168-2024(08)x7016-x, Studies in Mathematics and Its Applications 8. North-Holland, Amsterdam (1981). (1981) Zbl0463.65046MR0635927DOI10.1016/s0168-2024(08)x7016-x
  21. Gudi, T., Majumder, P., 10.1016/j.camwa.2019.06.022, Comput. Math. Appl. 78 (2019), 3896-3915. (2019) Zbl1443.65203MR4029105DOI10.1016/j.camwa.2019.06.022
  22. Gudi, T., Majumder, P., 10.1016/j.cam.2019.02.026, J. Comput. Appl. Math. 357 (2019), 85-102. (2019) Zbl1418.65173MR3922211DOI10.1016/j.cam.2019.02.026
  23. Gudi, T., Majumder, P., 10.1515/cmam-2019-0057, Comput. Methods Appl. Math. 20 (2020), 273-292. (2020) Zbl1436.65182MR4080232DOI10.1515/cmam-2019-0057
  24. Gudi, T., Nataraj, N., Pani, A. K., 10.1007/s00211-008-0137-y, Numer. Math. 109 (2008), 233-268. (2008) Zbl1146.65076MR2385653DOI10.1007/s00211-008-0137-y
  25. Gudi, T., Porwal, K., 10.1090/S0025-5718-2013-02728-7, Math. Comput. 83 (2014), 579-602. (2014) Zbl1305.65231MR3143685DOI10.1090/S0025-5718-2013-02728-7
  26. Hintermüller, M., Ito, K., Kunisch, K., 10.1137/S1052623401383558, SIAM J. Optim. 13 (2003), 865-888. (2003) Zbl1080.90074MR1972219DOI10.1137/S1052623401383558
  27. Hozman, J., Tichý, T., Vlasák, M., 10.21136/AM.2019.0305-18, Appl. Math., Praha 64 (2019), 501-530. (2019) Zbl07144726MR4022161DOI10.21136/AM.2019.0305-18
  28. Johnson, C., 10.1137/0713050, SIAM J. Numer. Anal. 13 (1976), 599-606. (1976) Zbl0337.65055MR0483545DOI10.1137/0713050
  29. Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). (2000) Zbl0988.49003MR1786735DOI10.1137/1.9780898719451
  30. Lions, J.-L., 10.1070/RM1972v027n02ABEH001373, Russ. Math. Surv. 27 (1972), 91-159. (1972) Zbl0246.35010MR0296479DOI10.1070/RM1972v027n02ABEH001373
  31. Lions, J.-L., Stampacchia, G., 10.1002/cpa.3160200302, Commun. Pure Appl. Math. 20 (1967), 493-519. (1967) Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
  32. Moon, K.-S., Nochetto, R. H., Petersdorff, T. von, Zhang, C.-S., 10.1051/m2an:2007029, ESAIM, Math. Model. Numer. Anal. 41 (2007), 485-511. (2007) Zbl1142.65053MR2355709DOI10.1051/m2an:2007029
  33. Nochetto, R. H., Savaré, G., Verdi, C., 10.1016/S0764-4442(98)80407-2, C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 1437-1442. (1998) Zbl0944.65077MR1649189DOI10.1016/S0764-4442(98)80407-2
  34. Nochetto, R. H., Savaré, G., Verdi, C., 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M, Commun. Pure Appl. Math. 53 (2000), 525-589. (2000) Zbl1021.65047MR1737503DOI10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
  35. Otárola, E., Salgado, A. J., 10.1137/15M1029801, SIAM J. Numer. Anal. 54 (2016), 2619-2639. (2016) Zbl1349.65473MR3542012DOI10.1137/15M1029801
  36. Pani, A. K., Das, P. C., 10.1093/imanum/11.3.377, IMA J. Numer. Anal. 11 (1991), 377-392. (1991) Zbl0727.65113MR1118963DOI10.1093/imanum/11.3.377
  37. Riviére, B., 10.1137/1.9780898717440, Frontiers in Applied Mathematics 35. SIAM, Philadelphia (2008). (2008) Zbl1153.65112MR2431403DOI10.1137/1.9780898717440
  38. Riviére, B., Wheeler, M. F., Girault, V., 10.1137/S003614290037174X, SIAM J. Numer. Anal. 39 (2001), 902-931. (2001) Zbl1010.65045MR1860450DOI10.1137/S003614290037174X
  39. Rulla, J., 10.1137/0733005, SIAM J. Numer. Anal. 33 (1996), 68-87. (1996) Zbl0855.65102MR1377244DOI10.1137/0733005
  40. Savaré, G., Weak solutions and maximal regularity for abstract evolution inequalities, Adv. Math. Sci. Appl. 6 (1996), 377-418. (1996) Zbl0858.35073MR1411975
  41. Thomée, V., 10.1007/3-540-33122-0, Springer Series in Computational Mathematics 25. Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024DOI10.1007/3-540-33122-0
  42. Vuik, C., 10.1007/BF01386423, Numer. Math. 57 (1990), 453-471. (1990) Zbl0696.65069MR1063805DOI10.1007/BF01386423
  43. Wheeler, M. F., 10.1137/0715010, SIAM J. Numer. Anal. 15 (1978), 152-161. (1978) Zbl0384.65058MR0471383DOI10.1137/0715010
  44. Yang, X., Wang, G., Gu, X., 10.1002/num.21893, Numer. Methods Partial Differ. Equations 30 (2014), 1740-1754. (2014) Zbl1312.65107MR3246191DOI10.1002/num.21893
  45. Zhang, C.-S., Adaptive Finite Element Methods for Variational Inequalities: Theory and Application in Finance: Ph.D. Thesis, University of Maryland, College Park (2007). (2007) MR2711028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.