Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem
Applications of Mathematics (2021)
- Volume: 66, Issue: 5, page 673-699
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMajumder, Papri. "Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem." Applications of Mathematics 66.5 (2021): 673-699. <http://eudml.org/doc/298218>.
@article{Majumder2021,
abstract = {We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in $\mathbb \{R\}^d$$(d=2,3)$. For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order $\mathcal \{O\}(h+\Delta t)$ in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity $u_t\in \mathcal \{L\}^2(0,T; \mathcal \{L\}^2(\Omega ))$ is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.},
author = {Majumder, Papri},
journal = {Applications of Mathematics},
keywords = {finite element; discontinuous Galerkin method; parabolic obstacle problem},
language = {eng},
number = {5},
pages = {673-699},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem},
url = {http://eudml.org/doc/298218},
volume = {66},
year = {2021},
}
TY - JOUR
AU - Majumder, Papri
TI - Unified error analysis of discontinuous Galerkin methods for parabolic obstacle problem
JO - Applications of Mathematics
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 5
SP - 673
EP - 699
AB - We introduce and study various discontinuous Galerkin (DG) finite element approximations for a parabolic variational inequality associated with a general obstacle problem in $\mathbb {R}^d$$(d=2,3)$. For the fully-discrete DG scheme, we employ a piecewise linear finite element space for spatial discretization, whereas the time discretization is carried out with the implicit backward Euler method. We present a unified error analysis for all well known symmetric and non-symmetric DG fully discrete schemes, and derive error estimate of optimal order $\mathcal {O}(h+\Delta t)$ in an energy norm. Moreover, the analysis is performed without any assumptions on the speed of propagation of the free boundary and only the realistic regularity $u_t\in \mathcal {L}^2(0,T; \mathcal {L}^2(\Omega ))$ is assumed. Further, we present some numerical experiments to illustrate the performance of the proposed methods.
LA - eng
KW - finite element; discontinuous Galerkin method; parabolic obstacle problem
UR - http://eudml.org/doc/298218
ER -
References
top- Arnold, D. N., 10.1137/0719052, SIAM J. Numer. Anal. 19 (1982), 742-760. (1982) Zbl0482.65060MR0664882DOI10.1137/0719052
- Arnold, D. N., Brezzi, F., Cockburn, B., Marini, L. D., 10.1137/S0036142901384162, SIAM J. Numer. Anal. 39 (2002), 1749-1779. (2002) Zbl1008.65080MR1885715DOI10.1137/S0036142901384162
- Babuška, I., Zlámal, M., 10.1137/0710071, SIAM J. Numer. Anal. 10 (1973), 863-875. (1973) Zbl0237.65066MR0345432DOI10.1137/0710071
- Banz, L., Stephan, E. P., 10.1016/j.camwa.2013.03.003, Comput. Math. Appl. 67 (2014), 712-731. (2014) Zbl1350.65064MR3163875DOI10.1016/j.camwa.2013.03.003
- Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M., A high order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, Proceedings of 2nd European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics R. Decuypere, G. Dibelius Technologisch Instituut, Antwerpen (1997), 99-108. (1997)
- Berger, A. E., Falk, R. S., 10.1090/S0025-5718-1977-0438707-8, Math. Comput. 31 (1977), 619-628. (1977) Zbl0367.65056MR0438707DOI10.1090/S0025-5718-1977-0438707-8
- Brenner, S. C., Owens, L., Sung, L.-Y., A weakly over-penalized symmetric interior penalty method, ETNA, Electron. Tran. Numer. Anal. 30 (2008), 107-127. (2008) Zbl1171.65077MR2480072
- Brézis, H., Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1-168 French. (1972) Zbl0237.35001MR0428137
- Brézis, H., 10.1016/s0304-0208(08)x7125-7, North-Holland Mathematics Studies 5. North-Holland, Amsterdam (1973), French. (1973) Zbl0252.47055MR0348562DOI10.1016/s0304-0208(08)x7125-7
- Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A., Discontinuous finite elements for diffusion problems, Francesco Brioschi (1824-1897) Convegno di Studi Matematici Istituto Lombardo, Accademia di Scienze e Lettere, Milan (1999), 197-217. (1999)
- Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A., 10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y, Numer. Methods Partial Differ. Equations 16 (2000), 365-378. (2000) Zbl0957.65099MR1765651DOI10.1002/1098-2426(200007)16:4<365::AID-NUM2>3.0.CO;2-Y
- Castillo, P., Cockburn, B., Perugia, I., Schötzau, D., 10.1137/S0036142900371003, SIAM J. Numer. Anal. 38 (2000), 1676-1706. (2000) Zbl0987.65111MR1813251DOI10.1137/S0036142900371003
- Česenek, J., Feistauer, M., 10.1137/110828903, SIAM J. Numer. Anal. 50 (2012), 1181-1206. (2012) Zbl1312.65157MR2970739DOI10.1137/110828903
- Chen, Z., Nochetto, R. H., 10.1007/s002110050009, Numer. Math. 84 (2000), 527-548. (2000) Zbl0943.65075MR1742264DOI10.1007/s002110050009
- Ciarlet, P. G., 10.1137/1.9780898719208, Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174DOI10.1137/1.9780898719208
- Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D., 10.1137/S0036142900371544, SIAM J. Numer. Anal. 39 (2001), 264-285. (2001) Zbl1041.65080MR1860725DOI10.1137/S0036142900371544
- Cockburn, B., Shu, C.-W., 10.1137/S0036142997316712, SIAM J. Numer. Anal. 35 (1998), 2440-2463. (1998) Zbl0927.65118MR1655854DOI10.1137/S0036142997316712
- Fetter, A., 10.1007/BF01408576, Numer. Math. 50 (1987), 557-565. (1987) Zbl0617.65064MR0880335DOI10.1007/BF01408576
- Girault, V., Riviére, B., Wheeler, M. F., 10.1090/S0025-5718-04-01652-7, Math. Comput. 74 (2005), 53-84. (2005) Zbl1057.35029MR2085402DOI10.1090/S0025-5718-04-01652-7
- Glowinski, R., Lions, J.-L., Trémolières, R., 10.1016/s0168-2024(08)x7016-x, Studies in Mathematics and Its Applications 8. North-Holland, Amsterdam (1981). (1981) Zbl0463.65046MR0635927DOI10.1016/s0168-2024(08)x7016-x
- Gudi, T., Majumder, P., 10.1016/j.camwa.2019.06.022, Comput. Math. Appl. 78 (2019), 3896-3915. (2019) Zbl1443.65203MR4029105DOI10.1016/j.camwa.2019.06.022
- Gudi, T., Majumder, P., 10.1016/j.cam.2019.02.026, J. Comput. Appl. Math. 357 (2019), 85-102. (2019) Zbl1418.65173MR3922211DOI10.1016/j.cam.2019.02.026
- Gudi, T., Majumder, P., 10.1515/cmam-2019-0057, Comput. Methods Appl. Math. 20 (2020), 273-292. (2020) Zbl1436.65182MR4080232DOI10.1515/cmam-2019-0057
- Gudi, T., Nataraj, N., Pani, A. K., 10.1007/s00211-008-0137-y, Numer. Math. 109 (2008), 233-268. (2008) Zbl1146.65076MR2385653DOI10.1007/s00211-008-0137-y
- Gudi, T., Porwal, K., 10.1090/S0025-5718-2013-02728-7, Math. Comput. 83 (2014), 579-602. (2014) Zbl1305.65231MR3143685DOI10.1090/S0025-5718-2013-02728-7
- Hintermüller, M., Ito, K., Kunisch, K., 10.1137/S1052623401383558, SIAM J. Optim. 13 (2003), 865-888. (2003) Zbl1080.90074MR1972219DOI10.1137/S1052623401383558
- Hozman, J., Tichý, T., Vlasák, M., 10.21136/AM.2019.0305-18, Appl. Math., Praha 64 (2019), 501-530. (2019) Zbl07144726MR4022161DOI10.21136/AM.2019.0305-18
- Johnson, C., 10.1137/0713050, SIAM J. Numer. Anal. 13 (1976), 599-606. (1976) Zbl0337.65055MR0483545DOI10.1137/0713050
- Kinderlehrer, D., Stampacchia, G., 10.1137/1.9780898719451, Classics in Applied Mathematics 31. SIAM, Philadelphia (2000). (2000) Zbl0988.49003MR1786735DOI10.1137/1.9780898719451
- Lions, J.-L., 10.1070/RM1972v027n02ABEH001373, Russ. Math. Surv. 27 (1972), 91-159. (1972) Zbl0246.35010MR0296479DOI10.1070/RM1972v027n02ABEH001373
- Lions, J.-L., Stampacchia, G., 10.1002/cpa.3160200302, Commun. Pure Appl. Math. 20 (1967), 493-519. (1967) Zbl0152.34601MR0216344DOI10.1002/cpa.3160200302
- Moon, K.-S., Nochetto, R. H., Petersdorff, T. von, Zhang, C.-S., 10.1051/m2an:2007029, ESAIM, Math. Model. Numer. Anal. 41 (2007), 485-511. (2007) Zbl1142.65053MR2355709DOI10.1051/m2an:2007029
- Nochetto, R. H., Savaré, G., Verdi, C., 10.1016/S0764-4442(98)80407-2, C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 1437-1442. (1998) Zbl0944.65077MR1649189DOI10.1016/S0764-4442(98)80407-2
- Nochetto, R. H., Savaré, G., Verdi, C., 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M, Commun. Pure Appl. Math. 53 (2000), 525-589. (2000) Zbl1021.65047MR1737503DOI10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
- Otárola, E., Salgado, A. J., 10.1137/15M1029801, SIAM J. Numer. Anal. 54 (2016), 2619-2639. (2016) Zbl1349.65473MR3542012DOI10.1137/15M1029801
- Pani, A. K., Das, P. C., 10.1093/imanum/11.3.377, IMA J. Numer. Anal. 11 (1991), 377-392. (1991) Zbl0727.65113MR1118963DOI10.1093/imanum/11.3.377
- Riviére, B., 10.1137/1.9780898717440, Frontiers in Applied Mathematics 35. SIAM, Philadelphia (2008). (2008) Zbl1153.65112MR2431403DOI10.1137/1.9780898717440
- Riviére, B., Wheeler, M. F., Girault, V., 10.1137/S003614290037174X, SIAM J. Numer. Anal. 39 (2001), 902-931. (2001) Zbl1010.65045MR1860450DOI10.1137/S003614290037174X
- Rulla, J., 10.1137/0733005, SIAM J. Numer. Anal. 33 (1996), 68-87. (1996) Zbl0855.65102MR1377244DOI10.1137/0733005
- Savaré, G., Weak solutions and maximal regularity for abstract evolution inequalities, Adv. Math. Sci. Appl. 6 (1996), 377-418. (1996) Zbl0858.35073MR1411975
- Thomée, V., 10.1007/3-540-33122-0, Springer Series in Computational Mathematics 25. Springer, Berlin (2006). (2006) Zbl1105.65102MR2249024DOI10.1007/3-540-33122-0
- Vuik, C., 10.1007/BF01386423, Numer. Math. 57 (1990), 453-471. (1990) Zbl0696.65069MR1063805DOI10.1007/BF01386423
- Wheeler, M. F., 10.1137/0715010, SIAM J. Numer. Anal. 15 (1978), 152-161. (1978) Zbl0384.65058MR0471383DOI10.1137/0715010
- Yang, X., Wang, G., Gu, X., 10.1002/num.21893, Numer. Methods Partial Differ. Equations 30 (2014), 1740-1754. (2014) Zbl1312.65107MR3246191DOI10.1002/num.21893
- Zhang, C.-S., Adaptive Finite Element Methods for Variational Inequalities: Theory and Application in Finance: Ph.D. Thesis, University of Maryland, College Park (2007). (2007) MR2711028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.