A posteriori error analysis for parabolic variational inequalities
Kyoung-Sook Moon; Ricardo H. Nochetto; Tobias von Petersdorff; Chen-song Zhang
ESAIM: Mathematical Modelling and Numerical Analysis (2007)
- Volume: 41, Issue: 3, page 485-511
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMoon, Kyoung-Sook, et al. "A posteriori error analysis for parabolic variational inequalities." ESAIM: Mathematical Modelling and Numerical Analysis 41.3 (2007): 485-511. <http://eudml.org/doc/250072>.
@article{Moon2007,
abstract = {
Motivated by the pricing of American options for baskets we
consider a parabolic variational inequality in a bounded
polyhedral domain $\Omega\subset\mathbb\{R\}^d$ with a continuous piecewise
smooth obstacle. We formulate a fully discrete method by using
piecewise linear finite elements in space and the backward Euler
method in time. We define an a posteriori error estimator and show
that it gives an upper bound for the error in
L2(0,T;H1(Ω)). The error estimator is localized in the
sense that the size of the elliptic residual is only relevant in
the approximate non-contact region, and the approximability of the
obstacle is only relevant in the approximate contact region. We
also obtain lower bound results for the space error indicators in
the non-contact region, and for the time error estimator.
Numerical results for d=1,2 show that the error estimator decays
with the same rate as the actual error when the space meshsize h
and the time step τ tend to zero. Also, the error indicators
capture the correct behavior of the errors in both the contact and
the non-contact regions.
},
author = {Moon, Kyoung-Sook, Nochetto, Ricardo H., von Petersdorff, Tobias, Zhang, Chen-song},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {A posteriori error analysis; finite element method;
variational inequality; American option pricing.; backward Euler method; numerical results; a posteriori error analysis; variational inequality; American option pricing},
language = {eng},
month = {8},
number = {3},
pages = {485-511},
publisher = {EDP Sciences},
title = {A posteriori error analysis for parabolic variational inequalities},
url = {http://eudml.org/doc/250072},
volume = {41},
year = {2007},
}
TY - JOUR
AU - Moon, Kyoung-Sook
AU - Nochetto, Ricardo H.
AU - von Petersdorff, Tobias
AU - Zhang, Chen-song
TI - A posteriori error analysis for parabolic variational inequalities
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2007/8//
PB - EDP Sciences
VL - 41
IS - 3
SP - 485
EP - 511
AB -
Motivated by the pricing of American options for baskets we
consider a parabolic variational inequality in a bounded
polyhedral domain $\Omega\subset\mathbb{R}^d$ with a continuous piecewise
smooth obstacle. We formulate a fully discrete method by using
piecewise linear finite elements in space and the backward Euler
method in time. We define an a posteriori error estimator and show
that it gives an upper bound for the error in
L2(0,T;H1(Ω)). The error estimator is localized in the
sense that the size of the elliptic residual is only relevant in
the approximate non-contact region, and the approximability of the
obstacle is only relevant in the approximate contact region. We
also obtain lower bound results for the space error indicators in
the non-contact region, and for the time error estimator.
Numerical results for d=1,2 show that the error estimator decays
with the same rate as the actual error when the space meshsize h
and the time step τ tend to zero. Also, the error indicators
capture the correct behavior of the errors in both the contact and
the non-contact regions.
LA - eng
KW - A posteriori error analysis; finite element method;
variational inequality; American option pricing.; backward Euler method; numerical results; a posteriori error analysis; variational inequality; American option pricing
UR - http://eudml.org/doc/250072
ER -
References
top- W. Bangerth and R. Rannacher, Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2003).
- A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp.74 (2005) 1117–1138 (electronic).
- F. Black and M. Scholes, The pricing of options and corporate liabilities. J. Polit. Econ.81 (1973) 637–659.
- H. Brézis, Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert. North Holland (1973).
- H. Brézis and F.E. Browder, Nonlinear integral equations and systems of Hammerstein type. Adv. Math.18 (1975) 115–147.
- M. Broadie and J. Detemple, Recent advances in numerical methods for pricing derivative securities, in Numerical Methods in Finance, L.C.G. Rogers and D. Talay Eds., Cambridge University Press (1997) 43–66.
- L.A. Caffarelli, The regularity of monotone maps of finite compression. Comm. Pure Appl. Math.50 (1997) 563–591.
- Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math.84 (2000) 527–548.
- C.W. Cryer, Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems I, Ist. Naz. Alta Mat. Francesco Severi (1980) 109–131.
- A. Fetter, L∞-error estimate for an approximation of a parabolic variational inequality. Numer. Math.50 (1987) 57–565.
- F. Fierro and A. Veeser, A posteriori error estimators for regularized total variation of characteristic functions. SIAM J. Numer. Anal.41 (2003) 2032–2055.
- R. Glowinski, Numerical methods for nonlinear variational problems. Springer series in computational physics, Springer-Verlag (1984).
- P. Jaillet, D. Lamberton and B. Lapeyre, Variational inequalities and the pricing of American options. Acta Appl. Math.21 (1990) 263–289.
- C. Johnson, Convergence estimate for an approximation of a parabolic variational inequatlity. SIAM J. Numer. Anal.13 (1976) 599–606.
- D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to finance. Springer (1996).
- R.H. Nochetto and C.-S. Zhang, Adaptive mesh refinement for evolution obstacle problems (in preparation).
- R.H. Nochetto, G. Savaré and C. Verdi, Error control for nonlinear evolution equations. C.R. Acad. Sci. Paris Ser. I326 (1998) 1437–1442.
- R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. PureAppl. Math.53 (2000) 525–589.
- R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math.95 (2003) 163–195.
- R.H. Nochetto, K.G. Siebert and A. Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems. SIAM J. Numer. Anal.42 (2005) 2118–2135.
- M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg.167 (1998) 223–237.
- A. Schmidt and K.G. Siebert, Design of adaptive finite element software: the finite element toolbox ALBERTA. Lecture Notes in Computational Science and Engineering, Springer (2005).
- A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems. SIAM J. Numer. Anal.39 (2001) 146–167.
- R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley Teubner (1996).
- R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo40 (2003) 195–212.
- T. von Petersdorff and C. Schwab, Numerical solution of parabolic equations in high dimensions. ESAIM: M2AN38 (2004) 93–127.
- C. Vuik, An L2-error estimate for an approximation of the solution of a parabolic variational inequality. Numer. Math.57 (1990) 453–471.
- P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation. Oxford Financial Press, Oxford, UK (1993).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.