A Menon-type identity using Klee's function
Arya Chandran; Neha Elizabeth Thomas; K. Vishnu Namboothiri
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 1, page 165-176
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChandran, Arya, Thomas, Neha Elizabeth, and Namboothiri, K. Vishnu. "A Menon-type identity using Klee's function." Czechoslovak Mathematical Journal 72.1 (2022): 165-176. <http://eudml.org/doc/298242>.
@article{Chandran2022,
abstract = {Menon’s identity is a classical identity involving gcd sums and the Euler totient function $\phi $. A natural generalization of $\phi $ is the Klee’s function $\Phi _s$. We derive a Menon-type identity using Klee’s function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).},
author = {Chandran, Arya, Thomas, Neha Elizabeth, Namboothiri, K. Vishnu},
journal = {Czechoslovak Mathematical Journal},
keywords = {Euler totient function; generalized gcd; Jordan totient function; Klee's function},
language = {eng},
number = {1},
pages = {165-176},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A Menon-type identity using Klee's function},
url = {http://eudml.org/doc/298242},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Chandran, Arya
AU - Thomas, Neha Elizabeth
AU - Namboothiri, K. Vishnu
TI - A Menon-type identity using Klee's function
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 1
SP - 165
EP - 176
AB - Menon’s identity is a classical identity involving gcd sums and the Euler totient function $\phi $. A natural generalization of $\phi $ is the Klee’s function $\Phi _s$. We derive a Menon-type identity using Klee’s function and a generalization of the gcd function. This identity generalizes an identity given by Y. Li and D. Kim (2017).
LA - eng
KW - Euler totient function; generalized gcd; Jordan totient function; Klee's function
UR - http://eudml.org/doc/298242
ER -
References
top- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Cohen, E., 10.1215/S0012-7094-56-02348-1, Duke Math. J. 23 (1956), 515-522. (1956) Zbl0073.02903MR0082499DOI10.1215/S0012-7094-56-02348-1
- Haukkanen, P., 10.1007/s00010-005-2805-7, Aequationes Math. 70 (2005), 240-246. (2005) Zbl1207.11011MR2192277DOI10.1007/s00010-005-2805-7
- Haukkanen, P., Tóth, L., 10.5486/PMD.2020.8786, Publ. Math. 96 (2020), 487-502. (2020) Zbl07254963MR4108053DOI10.5486/PMD.2020.8786
- Haukkanen, P., Wang, J., A generalization of Menon's identity with respect to a set of polynomials, Port. Math. 53 (1996), 331-337. (1996) Zbl0856.11006MR1414871
- Jordan, C., Traité des substitutions et des équations algébriques, Gauthier-Villars, Paris (1870), French 9999JFM99999 03.0042.02. (1870) MR0091260
- Menon, P. Kesava, On the sum , J. Indian Math. Soc., New Ser. 29 (1965), 155-163. (1965) Zbl0144.27706MR0190065
- Klee, V. L., 10.2307/2304963, Am. Math. Mon. 55 (1948), 358-359. (1948) Zbl0030.29504MR0024917DOI10.2307/2304963
- Li, Y., Kim, D., 10.1016/j.jnt.2016.11.023, J. Number Theory 175 (2017), 42-50. (2017) Zbl1407.11009MR3608177DOI10.1016/j.jnt.2016.11.023
- Miguel, C., 10.1016/j.jnt.2015.12.018, J. Number Theory 164 (2016), 43-51. (2016) Zbl1378.11014MR3474377DOI10.1016/j.jnt.2015.12.018
- Rao, K. Nageswara, 10.1007/BFb0058793, Theory of Arithmetic Functions Lecture Notes in Mathematics 251. Springer, Berlin (1972), 181-192. (1972) Zbl0243.10008MR0337737DOI10.1007/BFb0058793
- Ramaiah, V. Sita, 10.1515/crll.1978.303-304.265, J. Reine Angew. Math. 303/304 (1978), 265-283. (1978) Zbl0391.10007MR0514685DOI10.1515/crll.1978.303-304.265
- Sivaramakrishnan, R., Classical Theory of Arithmetic Functions, Pure and Applied Mathematics 126. Marcel Dekker, New York (1989). (1989) Zbl0657.10001MR0980259
- Sury, B., 10.1007/s12215-009-0010-6, Rend. Circ. Mat. Palermo (2) 58 (2009), 99-108. (2009) Zbl1187.20015MR2504989DOI10.1007/s12215-009-0010-6
- Tărnăuceanu, M., 10.1142/S1793557115500874, Asian-Eur. J. Math. 8 (2015), Artile ID 1550087, 13 pages. (2015) Zbl1336.20029MR3424162DOI10.1142/S1793557115500874
- Tóth, L., Menon's identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat., Univ. Politec. Torino 69 (2011), 97-110. (2011) Zbl1235.11011MR2884710
- Tóth, L., 10.1142/S179304211850063X, Int. J. Number Theory 14 (2018), 1047-1054. (2018) Zbl1421.11010MR3801082DOI10.1142/S179304211850063X
- Tóth, L., 10.11650/tjm/180904, Taiwanese J. Math. 23 (2019), 557-561. (2019) Zbl1418.11012MR3952239DOI10.11650/tjm/180904
- Zhao, X.-P., Cao, Z.-F., 10.1142/S1793042117501299, Int. J. Number Theory 13 (2017), 2373-2379. (2017) Zbl1392.11004MR3704366DOI10.1142/S1793042117501299
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.