Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping
Applications of Mathematics (2022)
- Volume: 67, Issue: 1, page 21-47
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHong, Gimyong, and Hong, Hakho. "Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping." Applications of Mathematics 67.1 (2022): 21-47. <http://eudml.org/doc/298253>.
@article{Hong2022,
abstract = {We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation.},
author = {Hong, Gimyong, Hong, Hakho},
journal = {Applications of Mathematics},
keywords = {transmission problem; Kirchhoff plate; Kelvin-Voigt damping; energy decay; Carleman estimate},
language = {eng},
number = {1},
pages = {21-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping},
url = {http://eudml.org/doc/298253},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Hong, Gimyong
AU - Hong, Hakho
TI - Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 21
EP - 47
AB - We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation.
LA - eng
KW - transmission problem; Kirchhoff plate; Kelvin-Voigt damping; energy decay; Carleman estimate
UR - http://eudml.org/doc/298253
ER -
References
top- Ammari, K., Jellouli, M., Mehrenberger, M., 10.3934/nhm.2009.4.19, Netw. Heterog. Media 4 (2009), 19-34. (2009) Zbl1183.93109MR2480421DOI10.3934/nhm.2009.4.19
- Ammari, K., Nicaise, S., 10.1016/j.jde.2010.03.007, J. Differ. Equations 249 (2010), 707-727. (2010) Zbl1201.35128MR2646047DOI10.1016/j.jde.2010.03.007
- Ammari, K., Vodev, G., Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation, Cubo 11 (2009), 39-49. (2009) Zbl1184.35045MR2568250
- Avalos, G., Lasiecka, I., Triggiani, R., 10.1016/j.jmaa.2015.12.051, J. Math. Anal. Appl. 437 (2016), 782-815. (2016) Zbl1336.35054MR3456199DOI10.1016/j.jmaa.2015.12.051
- Avalos, G., Triggiani, R., 10.1016/j.jde.2007.10.036, J. Differ. Equations 245 (2008), 737-761. (2008) Zbl1158.35300MR2422526DOI10.1016/j.jde.2007.10.036
- Avalos, G., Triggiani, R., 10.3934/dcds.2008.22.817, Discrete Contin. Dyn. Syst. 22 (2008), 817-833. (2008) Zbl1158.35320MR2434971DOI10.3934/dcds.2008.22.817
- Avalos, G., Triggiani, R., 10.3934/eect.2013.2.563, Evol. Equ. Control Theory 2 (2013), 563-598. (2013) Zbl1277.35045MR3177244DOI10.3934/eect.2013.2.563
- Avalos, G., Triggiani, R., 10.3934/eect.2013.2.233, Evol. Equ. Control Theory 2 (2013), 233-253. (2013) Zbl1275.35035MR3089718DOI10.3934/eect.2013.2.233
- Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A., 10.1090/conm/440, Fluids and Waves: Recent Trends in Applied Analysis Contemporary Mathematics 440. American Mathematical Society, Providence (2007), 55-82. (2007) Zbl1297.35234MR2359449DOI10.1090/conm/440
- Bastos, W. D., Raposo, C. A., Transmission problem for waves with frictional damping, Electron. J. Differ. Equ. 2007 (2007), Article ID 60, 10 pages. (2007) Zbl1136.35315MR2299614
- Batty, C. J. K., Duyckaerts, T., 10.1007/s00028-008-0424-1, J. Evol. Equ. 8 (2008), 765-780. (2008) Zbl1185.47043MR2460938DOI10.1007/s00028-008-0424-1
- Bellassoued, M., Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptotic. Anal. 35 (2003), 257-279. (2003) Zbl1137.35388MR2011790
- Burq, N., 10.1007/BF02392877, Acta Math. 180 (1998), 1-29 French. (1998) Zbl0918.35081MR1618254DOI10.1007/BF02392877
- Chai, S., 10.1007/s11424-011-8009-4, J. Syst. Sci. Complex 24 (2011), 253-260. (2011) Zbl1226.93111MR2802559DOI10.1007/s11424-011-8009-4
- Chai, S., Liu, K., Boundary stabilization of the transmission of wave equations with variable coefficients, Chin. Ann. Math., Ser. A 26 (2005), 605-612 Chinese. (2005) Zbl1090.35010MR2186628
- Chen, S., Liu, K., Liu, Z., 10.1137/S0036139996292015, SIAM J. Appl. Math. 59 (1999), 651-668. (1999) Zbl0924.35018MR1654395DOI10.1137/S0036139996292015
- Du, Q., Gunzburger, M. D., Hou, L. S., Lee, J., 10.3934/dcds.2003.9.633, Discrete Contin. Dyn. Syst. 9 (2003), 633-650. (2003) Zbl1039.35076MR1974530DOI10.3934/dcds.2003.9.633
- Duyckaerts, T., Optimal decay rates of the energy of an hyperbolic-parabolic system coupled by an interface, Asymptotic. Anal. 51 (2007), 17-45. (2007) Zbl1227.35062MR2294103
- Engel, K.-J., Nagel, R., 10.1007/b97696, Graduate Texts in Mathematics 194. Springer, Berlin (2000). (2000) Zbl0952.47036MR1721989DOI10.1007/b97696
- Hassine, F., 10.1016/j.ejcon.2015.03.001, Eur. J. Control 23 (2015), 84-93. (2015) Zbl1360.93600MR3339649DOI10.1016/j.ejcon.2015.03.001
- Hassine, F., 10.3934/dcdsb.2016021, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 1757-1774. (2016) Zbl1350.35031MR3543607DOI10.3934/dcdsb.2016021
- Hassine, F., 10.1080/00207179.2015.1135509, Int. J. Control 89 (2016), 1933-1950. (2016) Zbl1364.35043MR3568279DOI10.1080/00207179.2015.1135509
- Hassine, F., 10.1016/j.jmaa.2017.06.068, J. Math. Anal. Appl. 455 (2017), 1765-1782. (2017) Zbl1379.35024MR3671253DOI10.1016/j.jmaa.2017.06.068
- Lagnese, J. E., 10.1137/1.9781611970821, SIAM Studies in Applied Mathematics 10. SIAM, Philadelphia (1989). (1989) Zbl0696.73034MR1061153DOI10.1137/1.9781611970821
- Lasiecka, I., Triggiani, R., Zhang, J., 10.2174/1874114220130430001, Open Appl. Math. J. 7 (2013), 1-17. (2013) Zbl1322.74015MR3071536DOI10.2174/1874114220130430001
- Lebeau, G., Robbiano, L., 10.1080/03605309508821097, Commun. Partial Differ. Equations 20 (1995), 335-356 French. (1995) Zbl0819.35071MR1312710DOI10.1080/03605309508821097
- Lebeau, G., Robbiano, L., 10.1215/S0012-7094-97-08614-2, Duke Math. J. 86 (1997), 465-491 French. (1997) Zbl0884.58093MR1432305DOI10.1215/S0012-7094-97-08614-2
- Rousseau, J. Le, Lebeau, G., Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques: Applications au prolongement unique et au contrôle des équations paraboliques, Available at https://hal.archives-ouvertes.fr/hal-00351736v2 (2009), 27 pages French. (2009)
- Rousseau, J. Le, Robbiano, L., 10.1007/s00205-009-0242-9, Arch. Ration. Mech. Anal. 195 (2010), 953-990. (2010) Zbl1202.35336MR2591978DOI10.1007/s00205-009-0242-9
- Li, Y.-F., Han, Z.-J., Xu, G.-Q., 10.1016/j.aml.2017.11.003, Appl. Math. Lett. 78 (2018), 51-58. (2018) Zbl1383.35028MR3739755DOI10.1016/j.aml.2017.11.003
- Liu, K., Liu, Z., 10.1137/S0363012996310703, SIAM J. Control Optim. 36 (1998), 1086-1098. (1998) Zbl0909.35018MR1613917DOI10.1137/S0363012996310703
- Liu, K., Liu, Z., 10.1007/s00033-002-8155-6, Z. Angew. Math. Phys. 53 (2002), 265-280. (2002) Zbl0999.35012MR1900674DOI10.1007/s00033-002-8155-6
- Liu, W., Williams, G., 10.1017/S0004972700031683, Bull. Aust. Math. Soc. 57 (1998), 305-327. (1998) Zbl0914.35074MR1617324DOI10.1017/S0004972700031683
- Ramos, A. J. A., Souza, M. W. P., 10.1007/s00033-017-0791-y, Z. Angew. Math. Phys. 68 (2017), Article ID 48, 11 pages. (2017) Zbl1373.35191MR3626611DOI10.1007/s00033-017-0791-y
- Rauch, J., Zhang, X., Zuazua, E., 10.1016/j.matpur.2004.09.006, J. Math. Pures Appl., IX. Sér. 84 (2005), 407-470. (2005) Zbl1077.35030MR2132724DOI10.1016/j.matpur.2004.09.006
- Wloka, J. T., Rowley, B., Lawruk, B., 10.1017/CBO9780511662850, Cambridge University Press, Cambridge (1995). (1995) Zbl0836.35042MR1343490DOI10.1017/CBO9780511662850
- Zhang, Q., 10.1007/s00033-010-0064-5, Z. Angew. Math. Phys. 61 (2010), 1009-1015. (2010) Zbl1273.74120MR2738301DOI10.1007/s00033-010-0064-5
- Zhang, Q., 10.1016/j.nonrwa.2017.02.019, Nonlinear Anal., Real World Appl. 37 (2017), 387-411. (2017) Zbl1375.35037MR3648388DOI10.1016/j.nonrwa.2017.02.019
- Zhang, X., Zuazua, E., 10.1007/s00205-006-0020-x, Arch. Ration. Mech. Anal. 184 (2007), 49-120. (2007) Zbl1178.74075MR2289863DOI10.1007/s00205-006-0020-x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.