Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping

Gimyong Hong; Hakho Hong

Applications of Mathematics (2022)

  • Volume: 67, Issue: 1, page 21-47
  • ISSN: 0862-7940

Abstract

top
We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation.

How to cite

top

Hong, Gimyong, and Hong, Hakho. "Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping." Applications of Mathematics 67.1 (2022): 21-47. <http://eudml.org/doc/298253>.

@article{Hong2022,
abstract = {We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation.},
author = {Hong, Gimyong, Hong, Hakho},
journal = {Applications of Mathematics},
keywords = {transmission problem; Kirchhoff plate; Kelvin-Voigt damping; energy decay; Carleman estimate},
language = {eng},
number = {1},
pages = {21-47},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping},
url = {http://eudml.org/doc/298253},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Hong, Gimyong
AU - Hong, Hakho
TI - Logarithmic stabilization of the Kirchhoff plate transmission system with locally distributed Kelvin-Voigt damping
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 21
EP - 47
AB - We are concerned with a transmission problem for the Kirchhoff plate equation where one small part of the domain is made of a viscoelastic material with the Kelvin-Voigt constitutive relation. We obtain the logarithmic stabilization result (explicit energy decay rate), as well as the wellposedness, for the transmission system. The method is based on a new Carleman estimate to obtain information on the resolvent for high frequency. The main ingredient of the proof is some careful analysis for the Kirchhoff transmission plate equation.
LA - eng
KW - transmission problem; Kirchhoff plate; Kelvin-Voigt damping; energy decay; Carleman estimate
UR - http://eudml.org/doc/298253
ER -

References

top
  1. Ammari, K., Jellouli, M., Mehrenberger, M., 10.3934/nhm.2009.4.19, Netw. Heterog. Media 4 (2009), 19-34. (2009) Zbl1183.93109MR2480421DOI10.3934/nhm.2009.4.19
  2. Ammari, K., Nicaise, S., 10.1016/j.jde.2010.03.007, J. Differ. Equations 249 (2010), 707-727. (2010) Zbl1201.35128MR2646047DOI10.1016/j.jde.2010.03.007
  3. Ammari, K., Vodev, G., Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation, Cubo 11 (2009), 39-49. (2009) Zbl1184.35045MR2568250
  4. Avalos, G., Lasiecka, I., Triggiani, R., 10.1016/j.jmaa.2015.12.051, J. Math. Anal. Appl. 437 (2016), 782-815. (2016) Zbl1336.35054MR3456199DOI10.1016/j.jmaa.2015.12.051
  5. Avalos, G., Triggiani, R., 10.1016/j.jde.2007.10.036, J. Differ. Equations 245 (2008), 737-761. (2008) Zbl1158.35300MR2422526DOI10.1016/j.jde.2007.10.036
  6. Avalos, G., Triggiani, R., 10.3934/dcds.2008.22.817, Discrete Contin. Dyn. Syst. 22 (2008), 817-833. (2008) Zbl1158.35320MR2434971DOI10.3934/dcds.2008.22.817
  7. Avalos, G., Triggiani, R., 10.3934/eect.2013.2.563, Evol. Equ. Control Theory 2 (2013), 563-598. (2013) Zbl1277.35045MR3177244DOI10.3934/eect.2013.2.563
  8. Avalos, G., Triggiani, R., 10.3934/eect.2013.2.233, Evol. Equ. Control Theory 2 (2013), 233-253. (2013) Zbl1275.35035MR3089718DOI10.3934/eect.2013.2.233
  9. Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A., 10.1090/conm/440, Fluids and Waves: Recent Trends in Applied Analysis Contemporary Mathematics 440. American Mathematical Society, Providence (2007), 55-82. (2007) Zbl1297.35234MR2359449DOI10.1090/conm/440
  10. Bastos, W. D., Raposo, C. A., Transmission problem for waves with frictional damping, Electron. J. Differ. Equ. 2007 (2007), Article ID 60, 10 pages. (2007) Zbl1136.35315MR2299614
  11. Batty, C. J. K., Duyckaerts, T., 10.1007/s00028-008-0424-1, J. Evol. Equ. 8 (2008), 765-780. (2008) Zbl1185.47043MR2460938DOI10.1007/s00028-008-0424-1
  12. Bellassoued, M., Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization, Asymptotic. Anal. 35 (2003), 257-279. (2003) Zbl1137.35388MR2011790
  13. Burq, N., 10.1007/BF02392877, Acta Math. 180 (1998), 1-29 French. (1998) Zbl0918.35081MR1618254DOI10.1007/BF02392877
  14. Chai, S., 10.1007/s11424-011-8009-4, J. Syst. Sci. Complex 24 (2011), 253-260. (2011) Zbl1226.93111MR2802559DOI10.1007/s11424-011-8009-4
  15. Chai, S., Liu, K., Boundary stabilization of the transmission of wave equations with variable coefficients, Chin. Ann. Math., Ser. A 26 (2005), 605-612 Chinese. (2005) Zbl1090.35010MR2186628
  16. Chen, S., Liu, K., Liu, Z., 10.1137/S0036139996292015, SIAM J. Appl. Math. 59 (1999), 651-668. (1999) Zbl0924.35018MR1654395DOI10.1137/S0036139996292015
  17. Du, Q., Gunzburger, M. D., Hou, L. S., Lee, J., 10.3934/dcds.2003.9.633, Discrete Contin. Dyn. Syst. 9 (2003), 633-650. (2003) Zbl1039.35076MR1974530DOI10.3934/dcds.2003.9.633
  18. Duyckaerts, T., Optimal decay rates of the energy of an hyperbolic-parabolic system coupled by an interface, Asymptotic. Anal. 51 (2007), 17-45. (2007) Zbl1227.35062MR2294103
  19. Engel, K.-J., Nagel, R., 10.1007/b97696, Graduate Texts in Mathematics 194. Springer, Berlin (2000). (2000) Zbl0952.47036MR1721989DOI10.1007/b97696
  20. Hassine, F., 10.1016/j.ejcon.2015.03.001, Eur. J. Control 23 (2015), 84-93. (2015) Zbl1360.93600MR3339649DOI10.1016/j.ejcon.2015.03.001
  21. Hassine, F., 10.3934/dcdsb.2016021, Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 1757-1774. (2016) Zbl1350.35031MR3543607DOI10.3934/dcdsb.2016021
  22. Hassine, F., 10.1080/00207179.2015.1135509, Int. J. Control 89 (2016), 1933-1950. (2016) Zbl1364.35043MR3568279DOI10.1080/00207179.2015.1135509
  23. Hassine, F., 10.1016/j.jmaa.2017.06.068, J. Math. Anal. Appl. 455 (2017), 1765-1782. (2017) Zbl1379.35024MR3671253DOI10.1016/j.jmaa.2017.06.068
  24. Lagnese, J. E., 10.1137/1.9781611970821, SIAM Studies in Applied Mathematics 10. SIAM, Philadelphia (1989). (1989) Zbl0696.73034MR1061153DOI10.1137/1.9781611970821
  25. Lasiecka, I., Triggiani, R., Zhang, J., 10.2174/1874114220130430001, Open Appl. Math. J. 7 (2013), 1-17. (2013) Zbl1322.74015MR3071536DOI10.2174/1874114220130430001
  26. Lebeau, G., Robbiano, L., 10.1080/03605309508821097, Commun. Partial Differ. Equations 20 (1995), 335-356 French. (1995) Zbl0819.35071MR1312710DOI10.1080/03605309508821097
  27. Lebeau, G., Robbiano, L., 10.1215/S0012-7094-97-08614-2, Duke Math. J. 86 (1997), 465-491 French. (1997) Zbl0884.58093MR1432305DOI10.1215/S0012-7094-97-08614-2
  28. Rousseau, J. Le, Lebeau, G., Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques: Applications au prolongement unique et au contrôle des équations paraboliques, Available at https://hal.archives-ouvertes.fr/hal-00351736v2 (2009), 27 pages French. (2009) 
  29. Rousseau, J. Le, Robbiano, L., 10.1007/s00205-009-0242-9, Arch. Ration. Mech. Anal. 195 (2010), 953-990. (2010) Zbl1202.35336MR2591978DOI10.1007/s00205-009-0242-9
  30. Li, Y.-F., Han, Z.-J., Xu, G.-Q., 10.1016/j.aml.2017.11.003, Appl. Math. Lett. 78 (2018), 51-58. (2018) Zbl1383.35028MR3739755DOI10.1016/j.aml.2017.11.003
  31. Liu, K., Liu, Z., 10.1137/S0363012996310703, SIAM J. Control Optim. 36 (1998), 1086-1098. (1998) Zbl0909.35018MR1613917DOI10.1137/S0363012996310703
  32. Liu, K., Liu, Z., 10.1007/s00033-002-8155-6, Z. Angew. Math. Phys. 53 (2002), 265-280. (2002) Zbl0999.35012MR1900674DOI10.1007/s00033-002-8155-6
  33. Liu, W., Williams, G., 10.1017/S0004972700031683, Bull. Aust. Math. Soc. 57 (1998), 305-327. (1998) Zbl0914.35074MR1617324DOI10.1017/S0004972700031683
  34. Ramos, A. J. A., Souza, M. W. P., 10.1007/s00033-017-0791-y, Z. Angew. Math. Phys. 68 (2017), Article ID 48, 11 pages. (2017) Zbl1373.35191MR3626611DOI10.1007/s00033-017-0791-y
  35. Rauch, J., Zhang, X., Zuazua, E., 10.1016/j.matpur.2004.09.006, J. Math. Pures Appl., IX. Sér. 84 (2005), 407-470. (2005) Zbl1077.35030MR2132724DOI10.1016/j.matpur.2004.09.006
  36. Wloka, J. T., Rowley, B., Lawruk, B., 10.1017/CBO9780511662850, Cambridge University Press, Cambridge (1995). (1995) Zbl0836.35042MR1343490DOI10.1017/CBO9780511662850
  37. Zhang, Q., 10.1007/s00033-010-0064-5, Z. Angew. Math. Phys. 61 (2010), 1009-1015. (2010) Zbl1273.74120MR2738301DOI10.1007/s00033-010-0064-5
  38. Zhang, Q., 10.1016/j.nonrwa.2017.02.019, Nonlinear Anal., Real World Appl. 37 (2017), 387-411. (2017) Zbl1375.35037MR3648388DOI10.1016/j.nonrwa.2017.02.019
  39. Zhang, X., Zuazua, E., 10.1007/s00205-006-0020-x, Arch. Ration. Mech. Anal. 184 (2007), 49-120. (2007) Zbl1178.74075MR2289863DOI10.1007/s00205-006-0020-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.