Limited -converging operators and relation with some geometric properties of Banach spaces
Mohammad B. Dehghani; Seyed M. Moshtaghioun
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 4, page 417-430
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topDehghani, Mohammad B., and Moshtaghioun, Seyed M.. "Limited $p$-converging operators and relation with some geometric properties of Banach spaces." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 417-430. <http://eudml.org/doc/298254>.
@article{Dehghani2021,
abstract = {By using the concepts of limited $p$-converging operators between two Banach spaces $X$ and $Y$, $L_p$-sets and $L_p$-limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as $*$-Dunford–Pettis property of order $p$ and Pelczyński’s property of order $p$, $1\le p<\infty $.},
author = {Dehghani, Mohammad B., Moshtaghioun, Seyed M.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Gelfand–Phillips property; Schur property; $p$-Schur property; weakly $p$-compact set; reciprocal Dunford–Pettis property of order $p$},
language = {eng},
number = {4},
pages = {417-430},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Limited $p$-converging operators and relation with some geometric properties of Banach spaces},
url = {http://eudml.org/doc/298254},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Dehghani, Mohammad B.
AU - Moshtaghioun, Seyed M.
TI - Limited $p$-converging operators and relation with some geometric properties of Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 417
EP - 430
AB - By using the concepts of limited $p$-converging operators between two Banach spaces $X$ and $Y$, $L_p$-sets and $L_p$-limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as $*$-Dunford–Pettis property of order $p$ and Pelczyński’s property of order $p$, $1\le p<\infty $.
LA - eng
KW - Gelfand–Phillips property; Schur property; $p$-Schur property; weakly $p$-compact set; reciprocal Dunford–Pettis property of order $p$
UR - http://eudml.org/doc/298254
ER -
References
top- Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, New York, 2006. Zbl1094.46002MR2192298
- Bourgain J., Diestel J., 10.1002/mana.19841190105, Math. Nachr. 119 (1984), 55–58. Zbl0601.47019MR0774176DOI10.1002/mana.19841190105
- Castillo J. M. F., Sanchez F., Dunford–Pettis-like properties of continuous vector function spaces, Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR1245024
- Castillo J. M. F., Sánchez F., 10.1006/jmaa.1994.1246, J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. MR1283055DOI10.1006/jmaa.1994.1246
- Defant A., Floret K., Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993. MR1209438
- Dehghani M. B., Moshtaghioun S. M., 10.1215/20088752-2017-0033, Ann. Funct. Anal. 9 (2018), no. 1, 123–136. MR3758748DOI10.1215/20088752-2017-0033
- Dehghani M. B., Moshtaghioun S. M., Dehghani M., On the limited -Schur property of some operator spaces, Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR3758748
- Dehghani M., Dehghani M. B., Moshtaghioun M. S., Sequentially right Banach spaces of order , Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR4093429
- Delgado J. M., Piñeiro C., 10.1016/j.jmaa.2013.08.045, J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. MR3111861DOI10.1016/j.jmaa.2013.08.045
- Diestel J., Jarchow H., Tonge A., Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. MR1342297
- Drewnowski L., 10.1007/BF01229808, Math. Z. 193 (1986), no. 3, 405–411. MR0862887DOI10.1007/BF01229808
- Emmanuele G., A dual characterization of Banach spaces not containing , Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR0861172
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2013.779611, Quaest. Math. 37 (2014), no. 3, 349–358. MR3285289DOI10.2989/16073606.2013.779611
- Fourie J. H., Zeekoei E. D., 10.2989/16073606.2017.1301591, Quaest. Math. 40 (2017), no. 5, 563–579. MR3691468DOI10.2989/16073606.2017.1301591
- Ghenciu I., Lewis P., 10.4064/cm106-2-11, Colloq. Math. 106 (2006), no. 2, 311–324. MR2283818DOI10.4064/cm106-2-11
- Grothendieck A., 10.4153/CJM-1953-017-4, Canad. J. Math. 5 (1953), 129–173 (French). Zbl0050.10902MR0058866DOI10.4153/CJM-1953-017-4
- Karn A. K., Sinha D. P., 10.1017/S0017089513000360, Glasg. Math. J. 56 (2014), no. 2, 427–437. MR3187909DOI10.1017/S0017089513000360
- Li L., Chen D., Chávez-Domínguez J. A., 10.1002/mana.201600335, Math. Nachr. 291 (2018), no. 2–3, 420–442. MR3767145DOI10.1002/mana.201600335
- Moshtaghioun S. M., Zafarani J., 10.11650/twjm/1500403855, Taiwanese J. Math. 10 (2006), no. 3, 691–698. MR2206322DOI10.11650/twjm/1500403855
- Pelczyński A., Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR0149295
- Ruess W., 10.1016/S0304-0208(08)71467-1, Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78. Zbl0573.46007MR0761373DOI10.1016/S0304-0208(08)71467-1
- Ryan R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer, London, 2002. Zbl1090.46001MR1888309
- Salimi M., Moshtaghioun S. M., 10.15352/bjma/1313363004, Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR2792501DOI10.15352/bjma/1313363004
- Schlumprecht T., Limited sets in injective tensor products, Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158. MR1126743
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.