Extension of semiclean rings
Chahrazade Bakkari; Mohamed Es-Saidi; Najib Mahdou; Moutu Abdou Salam Moutui
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 461-476
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBakkari, Chahrazade, et al. "Extension of semiclean rings." Czechoslovak Mathematical Journal 72.2 (2022): 461-476. <http://eudml.org/doc/298298>.
@article{Bakkari2022,
abstract = {This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties.},
author = {Bakkari, Chahrazade, Es-Saidi, Mohamed, Mahdou, Najib, Abdou Salam Moutui, Moutu},
journal = {Czechoslovak Mathematical Journal},
keywords = {amalgamated algebra; nil-clean ring; periodic ring; pullback; UU ring; semiclean ring},
language = {eng},
number = {2},
pages = {461-476},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extension of semiclean rings},
url = {http://eudml.org/doc/298298},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Bakkari, Chahrazade
AU - Es-Saidi, Mohamed
AU - Mahdou, Najib
AU - Abdou Salam Moutui, Moutu
TI - Extension of semiclean rings
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 461
EP - 476
AB - This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties.
LA - eng
KW - amalgamated algebra; nil-clean ring; periodic ring; pullback; UU ring; semiclean ring
UR - http://eudml.org/doc/298298
ER -
References
top- Anderson, D. D., Bisht, N., 10.1080/00927872.2019.1710177, Commun. Algebra 48 (2020), 2127-2142. (2020) Zbl1440.16043MR4085783DOI10.1080/00927872.2019.1710177
- Arora, N., Kundu, S., 10.1216/JCA-2014-6-1-1, J. Commut. Algebra 6 (2014), 1-16. (2014) Zbl1294.16025MR3215558DOI10.1216/JCA-2014-6-1-1
- Badawi, A., 10.1080/00927879708825906, Commun. Algebra 25 (1997), 1009--1021. (1997) Zbl0881.16003MR1437658DOI10.1080/00927879708825906
- Badawi, A., Chin, A. Y. M., Chen, H. V., On rings with near idempotent elements, Int. J. Pure Appl. Math. 1 (2002), 255-261. (2002) Zbl1008.16007MR1912681
- Bakkari, C., Es-Saidi, M., 10.1007/s11565-018-0304-8, Ann. Univ. Ferrara Sez. VII Sci. Mat. 65 (2019), 15-20. (2019) Zbl1441.13036MR3941129DOI10.1007/s11565-018-0304-8
- Bell, H. E., 10.1007/BF01223732, Arch. Math. 36 (1981), 502-509. (1981) Zbl0443.16016MR1552710DOI10.1007/BF01223732
- Chacron, M., 10.4153/CJM-1969-148-5, Can. J. Math. 21 (1969), 1348-1353. (1969) Zbl0213.04302MR0262295DOI10.4153/CJM-1969-148-5
- Chhiti, M., Mahdou, N., Tamekkante, M., 10.15672/HJMS.2015449103, Hacet. J. Math. Stat. 44 (2015), 41-49. (2015) Zbl1320.13020MR3363762DOI10.15672/HJMS.2015449103
- D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
- Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
- Han, J., Nicholson, W. K., 10.1081/AGB-100002409, Commun. Algebra 29 (2001), 2589-2595. (2001) Zbl0989.16015MR1845131DOI10.1081/AGB-100002409
- Hirano, Y., Tominaga, H., Yaqub, A., 10.18926/mjou/33546, Math. J. Okayama Univ. 30 (1988), 33-40. (1988) Zbl0665.16016MR0976729DOI10.18926/mjou/33546
- Huckaba, J. A., Commutative Rings with Zero-Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
- Kabbaj, S.-E., Matlis' semi-regularity and semi-coherence in trivial ring extensions: A survey, (to appear) in Moroccan J. Algebra Geometry Appl.
- Kabbour, M., Trivial ring extensions and amalgamations of periodic rings, Gulf J. Math. 3 (2015), 12-16. (2015) Zbl1389.13053MR3339429
- Mahdou, N., Moutui, M. A. S., 10.1556/012.2018.55.2.1397, Stud. Sci. Math. Hung. 55 (2018), 270-279. (2018) Zbl1413.13019MR3813356DOI10.1556/012.2018.55.2.1397
- Mahdou, N., Moutui, M. A. S., 10.21136/CMJ.2019.0335-18, Czech. Math. J. 70 (2020), 381-391. (2020) Zbl7217141MR4111849DOI10.21136/CMJ.2019.0335-18
- Mahdou, N., Moutui, M. A. S., 10.1007/s11587-019-00451-1, Ric. Mat. 69 (2020), 111-120. (2020) Zbl1440.13088MR4098175DOI10.1007/s11587-019-00451-1
- McGovern, W. W., Raphael, R., 10.1016/j.topol.2015.05.001, Topology Appl. 190 (2015), 99-108. (2015) Zbl1322.46020MR3349509DOI10.1016/j.topol.2015.05.001
- Nicholson, W. K., 10.1090/S0002-9947-1977-0439876-2, Trans. Am. Math. Soc. 229 (1977), 269-278. (1977) Zbl0352.16006MR0439876DOI10.1090/S0002-9947-1977-0439876-2
- Ôhori, M., On strongly -regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52. (1985) Zbl0598.16019MR0833455
- Šter, J., 10.1080/00927872.2011.551901, Commun. Algebra 40 (2012), 1595-1604. (2012) Zbl1247.16034MR2924469DOI10.1080/00927872.2011.551901
- Ye, Y., 10.1081/AGB-120023977, Commun. Algebra 31 (2003), 5609-5625. (2003) Zbl1043.16015MR2005247DOI10.1081/AGB-120023977
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.