Extension of semiclean rings

Chahrazade Bakkari; Mohamed Es-Saidi; Najib Mahdou; Moutu Abdou Salam Moutui

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 461-476
  • ISSN: 0011-4642

Abstract

top
This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties.

How to cite

top

Bakkari, Chahrazade, et al. "Extension of semiclean rings." Czechoslovak Mathematical Journal 72.2 (2022): 461-476. <http://eudml.org/doc/298298>.

@article{Bakkari2022,
abstract = {This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties.},
author = {Bakkari, Chahrazade, Es-Saidi, Mohamed, Mahdou, Najib, Abdou Salam Moutui, Moutu},
journal = {Czechoslovak Mathematical Journal},
keywords = {amalgamated algebra; nil-clean ring; periodic ring; pullback; UU ring; semiclean ring},
language = {eng},
number = {2},
pages = {461-476},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extension of semiclean rings},
url = {http://eudml.org/doc/298298},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Bakkari, Chahrazade
AU - Es-Saidi, Mohamed
AU - Mahdou, Najib
AU - Abdou Salam Moutui, Moutu
TI - Extension of semiclean rings
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 461
EP - 476
AB - This paper aims at the study of the notions of periodic, UU and semiclean properties in various context of commutative rings such as trivial ring extensions, amalgamations and pullbacks. The results obtained provide new original classes of rings subject to various ring theoretic properties.
LA - eng
KW - amalgamated algebra; nil-clean ring; periodic ring; pullback; UU ring; semiclean ring
UR - http://eudml.org/doc/298298
ER -

References

top
  1. Anderson, D. D., Bisht, N., 10.1080/00927872.2019.1710177, Commun. Algebra 48 (2020), 2127-2142. (2020) Zbl1440.16043MR4085783DOI10.1080/00927872.2019.1710177
  2. Arora, N., Kundu, S., 10.1216/JCA-2014-6-1-1, J. Commut. Algebra 6 (2014), 1-16. (2014) Zbl1294.16025MR3215558DOI10.1216/JCA-2014-6-1-1
  3. Badawi, A., 10.1080/00927879708825906, Commun. Algebra 25 (1997), 1009--–1021. (1997) Zbl0881.16003MR1437658DOI10.1080/00927879708825906
  4. Badawi, A., Chin, A. Y. M., Chen, H. V., On rings with near idempotent elements, Int. J. Pure Appl. Math. 1 (2002), 255-261. (2002) Zbl1008.16007MR1912681
  5. Bakkari, C., Es-Saidi, M., 10.1007/s11565-018-0304-8, Ann. Univ. Ferrara Sez. VII Sci. Mat. 65 (2019), 15-20. (2019) Zbl1441.13036MR3941129DOI10.1007/s11565-018-0304-8
  6. Bell, H. E., 10.1007/BF01223732, Arch. Math. 36 (1981), 502-509. (1981) Zbl0443.16016MR1552710DOI10.1007/BF01223732
  7. Chacron, M., 10.4153/CJM-1969-148-5, Can. J. Math. 21 (1969), 1348-1353. (1969) Zbl0213.04302MR0262295DOI10.4153/CJM-1969-148-5
  8. Chhiti, M., Mahdou, N., Tamekkante, M., 10.15672/HJMS.2015449103, Hacet. J. Math. Stat. 44 (2015), 41-49. (2015) Zbl1320.13020MR3363762DOI10.15672/HJMS.2015449103
  9. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
  10. Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
  11. Han, J., Nicholson, W. K., 10.1081/AGB-100002409, Commun. Algebra 29 (2001), 2589-2595. (2001) Zbl0989.16015MR1845131DOI10.1081/AGB-100002409
  12. Hirano, Y., Tominaga, H., Yaqub, A., 10.18926/mjou/33546, Math. J. Okayama Univ. 30 (1988), 33-40. (1988) Zbl0665.16016MR0976729DOI10.18926/mjou/33546
  13. Huckaba, J. A., Commutative Rings with Zero-Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
  14. Kabbaj, S.-E., Matlis' semi-regularity and semi-coherence in trivial ring extensions: A survey, (to appear) in Moroccan J. Algebra Geometry Appl. 
  15. Kabbour, M., Trivial ring extensions and amalgamations of periodic rings, Gulf J. Math. 3 (2015), 12-16. (2015) Zbl1389.13053MR3339429
  16. Mahdou, N., Moutui, M. A. S., 10.1556/012.2018.55.2.1397, Stud. Sci. Math. Hung. 55 (2018), 270-279. (2018) Zbl1413.13019MR3813356DOI10.1556/012.2018.55.2.1397
  17. Mahdou, N., Moutui, M. A. S., 10.21136/CMJ.2019.0335-18, Czech. Math. J. 70 (2020), 381-391. (2020) Zbl7217141MR4111849DOI10.21136/CMJ.2019.0335-18
  18. Mahdou, N., Moutui, M. A. S., 10.1007/s11587-019-00451-1, Ric. Mat. 69 (2020), 111-120. (2020) Zbl1440.13088MR4098175DOI10.1007/s11587-019-00451-1
  19. McGovern, W. W., Raphael, R., 10.1016/j.topol.2015.05.001, Topology Appl. 190 (2015), 99-108. (2015) Zbl1322.46020MR3349509DOI10.1016/j.topol.2015.05.001
  20. Nicholson, W. K., 10.1090/S0002-9947-1977-0439876-2, Trans. Am. Math. Soc. 229 (1977), 269-278. (1977) Zbl0352.16006MR0439876DOI10.1090/S0002-9947-1977-0439876-2
  21. Ôhori, M., On strongly π -regular rings and periodic rings, Math. J. Okayama Univ. 27 (1985), 49-52. (1985) Zbl0598.16019MR0833455
  22. Šter, J., 10.1080/00927872.2011.551901, Commun. Algebra 40 (2012), 1595-1604. (2012) Zbl1247.16034MR2924469DOI10.1080/00927872.2011.551901
  23. Ye, Y., 10.1081/AGB-120023977, Commun. Algebra 31 (2003), 5609-5625. (2003) Zbl1043.16015MR2005247DOI10.1081/AGB-120023977

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.