Gaussian and Prüfer conditions in bi-amalgamated algebras

Najib Mahdou; Moutu Abdou Salam Moutui

Czechoslovak Mathematical Journal (2020)

  • Volume: 70, Issue: 2, page 381-391
  • ISSN: 0011-4642

Abstract

top
Let f : A B and g : A C be two ring homomorphisms and let J and J ' be ideals of B and C , respectively, such that f - 1 ( J ) = g - 1 ( J ' ) . In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of A with ( B , C ) along ( J , J ' ) with respect to ( f , g ) (denoted by A f , g ( J , J ' ) ) , introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.

How to cite

top

Mahdou, Najib, and Moutui, Moutu Abdou Salam. "Gaussian and Prüfer conditions in bi-amalgamated algebras." Czechoslovak Mathematical Journal 70.2 (2020): 381-391. <http://eudml.org/doc/297404>.

@article{Mahdou2020,
abstract = {Let $f\colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $J$ and $J^\{\prime \}$ be ideals of $B$ and $C$, respectively, such that $f^\{-1\}(J)=g^\{-1\}(J^\{\prime \})$. In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of $A$ with $(B,C)$ along $(J,J^\{\prime \})$ with respect to $(f,g)$ (denoted by $A\bowtie ^\{f,g\}(J,J^\{\prime \})),$ introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.},
author = {Mahdou, Najib, Moutui, Moutu Abdou Salam},
journal = {Czechoslovak Mathematical Journal},
keywords = {bi-amalgamation; amalgamated algebra; Gaussian ring; Prüfer ring},
language = {eng},
number = {2},
pages = {381-391},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Gaussian and Prüfer conditions in bi-amalgamated algebras},
url = {http://eudml.org/doc/297404},
volume = {70},
year = {2020},
}

TY - JOUR
AU - Mahdou, Najib
AU - Moutui, Moutu Abdou Salam
TI - Gaussian and Prüfer conditions in bi-amalgamated algebras
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 381
EP - 391
AB - Let $f\colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $J$ and $J^{\prime }$ be ideals of $B$ and $C$, respectively, such that $f^{-1}(J)=g^{-1}(J^{\prime })$. In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of $A$ with $(B,C)$ along $(J,J^{\prime })$ with respect to $(f,g)$ (denoted by $A\bowtie ^{f,g}(J,J^{\prime })),$ introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.
LA - eng
KW - bi-amalgamation; amalgamated algebra; Gaussian ring; Prüfer ring
UR - http://eudml.org/doc/297404
ER -

References

top
  1. Abuhlail, J., Jarrar, M., Kabbaj, S., 10.1016/j.jpaa.2011.02.008, J. Pure Appl. Algebra 215 (2011), 2504-2511. (2011) Zbl1226.13014MR2793953DOI10.1016/j.jpaa.2011.02.008
  2. Bakkari, C., Kabbaj, S., Mahdou, N., /10.1016/j.jpaa.2009.04.011, J. Pure Appl. Algebra 214 (2010), 53-60. (2010) Zbl1175.13008MR2561766DOI/10.1016/j.jpaa.2009.04.011
  3. Bazzoni, S., Glaz, S., 10.1007/978-0-387-36717-0_4, Multiplicative Ideal Theory in Commutative Algebra J. W. Brewer et al. Springer, New York (2006), 55-72. (2006) Zbl1115.13024MR2265801DOI10.1007/978-0-387-36717-0_4
  4. Bazzoni, S., Glaz, S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (2007), 180-193. (2007) Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
  5. Boisen, M. B., Sheldon, P. B., 10.4153/CJM-1977-076-6, Can. J. Math. 29 (1977), 722-737. (1977) Zbl0363.13002MR0447205DOI10.4153/CJM-1977-076-6
  6. Butts, H. S., Smith, W., 10.1007/BF01111523, Math. Z. 95 (1967), 196-211. (1967) Zbl0153.37003MR0209271DOI10.1007/BF01111523
  7. Campanini, F., Finocchiaro, C. A., 10.1142/S0219498819501482, J. Algebra Appl. 18 (2019), Article ID 1950148, 16 pages. (2019) Zbl07096463MR3977809DOI10.1142/S0219498819501482
  8. Chhiti, M., Jarrar, M., Kabbaj, S., Mahdou, N., 10.1080/00927872.2014.897575, Commun. Algebra 43 (2015), 249-261. (2015) Zbl1327.13063MR3240418DOI10.1080/00927872.2014.897575
  9. D'Anna, M., 10.1016/j.jalgebra.2005.12.023, J. Algebra 306 (2006), 507-519. (2006) Zbl1120.13022MR2271349DOI10.1016/j.jalgebra.2005.12.023
  10. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and its Applications M. Fontana et al. Walter de Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
  11. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633-1641. (2010) Zbl1191.13006MR2593689DOI10.1016/j.jpaa.2009.12.008
  12. D'Anna, M., Fontana, M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (2007), 443-459. (2007) Zbl1126.13002MR2337762DOI10.1142/S0219498807002326
  13. Finocchiaro, C. A., Prüfer-like conditions on an amalgamated algebra along an ideal, Houston J. Math. 40 (2014), 63-79. (2014) Zbl1297.13002MR3210554
  14. Fuchs, L., 10.1007/BF02565607, Comment. Math. Helv. 23 (1949), 334-341 German. (1949) Zbl0040.30103MR0032583DOI10.1007/BF02565607
  15. Glaz, S., 10.1201/9781420028249.ch17, Arithmetical Properties of Commutative Rings and Monoids S. T. Chapman Lecture Notes in Pure Applied Mathematics 241, Chapman & Hall/CRC, Boca Raton (2005), 272-281. (2005) Zbl1107.13023MR2140700DOI10.1201/9781420028249.ch17
  16. Glaz, S., 10.1090/S0002-9939-05-08093-7, Proc. Am. Math. Soc. 133 (2005), 2507-2513. (2005) Zbl1077.13009MR2146192DOI10.1090/S0002-9939-05-08093-7
  17. Griffin, M., 10.1515/crll.1969.239-240.55, J. Reine Angew. Math. 239-240 (1969), 55-67. (1969) Zbl0185.09801MR0255527DOI10.1515/crll.1969.239-240.55
  18. Kabbaj, S., Louartiti, K., Tamekkante, M., 10.1216/JCA-2017-9-1-65, J. Commut. Algebra 9 (2017), 65-87. (2017) Zbl1390.13008MR3631827DOI10.1216/JCA-2017-9-1-65
  19. Kabbaj, S., Mahdou, N., Moutui, M. A. S., 10.1142/S021949881750030X, J. Algebra Appl. 16 (2017), Article ID 1750030, 11 pages. (2017) Zbl1390.13057MR3608417DOI10.1142/S021949881750030X
  20. Koehler, A., 10.1007/BF01359713, Math. Ann. 189 (1970), 311-316. (1970) Zbl0198.05602MR0280536DOI10.1007/BF01359713
  21. Krull, W., 10.1007/BF01180441, Math. Z. 41 (1936), 545-577 German. (1936) Zbl0015.00203MR1545640DOI10.1007/BF01180441
  22. Loper, K. A., Roitman, M., 10.1090/S0002-9939-04-07826-8, Proc. Am. Math. Soc. 133 (2005), 1267-1271. (2005) Zbl1137.13301MR2111931DOI10.1090/S0002-9939-04-07826-8
  23. Lucas, T. G., 10.1090/S0002-9939-05-07977-3, Proc. Am. Math. Soc. 133 (2005), 1881-1886. (2005) Zbl1154.13301MR2137851DOI10.1090/S0002-9939-05-07977-3
  24. Prüfer, H., 10.1515/crll.1932.168.1, J. Reine Angew. Math. 168 (1932), 1-36 German. (1932) Zbl0004.34001MR1581355DOI10.1515/crll.1932.168.1
  25. Tsang, H., Gauss's Lemma, Ph.D. Thesis, University of Chicago, Chicago (1965). (1965) MR2611536

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.