Gaussian and Prüfer conditions in bi-amalgamated algebras
Najib Mahdou; Moutu Abdou Salam Moutui
Czechoslovak Mathematical Journal (2020)
- Volume: 70, Issue: 2, page 381-391
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMahdou, Najib, and Moutui, Moutu Abdou Salam. "Gaussian and Prüfer conditions in bi-amalgamated algebras." Czechoslovak Mathematical Journal 70.2 (2020): 381-391. <http://eudml.org/doc/297404>.
@article{Mahdou2020,
abstract = {Let $f\colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $J$ and $J^\{\prime \}$ be ideals of $B$ and $C$, respectively, such that $f^\{-1\}(J)=g^\{-1\}(J^\{\prime \})$. In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of $A$ with $(B,C)$ along $(J,J^\{\prime \})$ with respect to $(f,g)$ (denoted by $A\bowtie ^\{f,g\}(J,J^\{\prime \})),$ introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.},
author = {Mahdou, Najib, Moutui, Moutu Abdou Salam},
journal = {Czechoslovak Mathematical Journal},
keywords = {bi-amalgamation; amalgamated algebra; Gaussian ring; Prüfer ring},
language = {eng},
number = {2},
pages = {381-391},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Gaussian and Prüfer conditions in bi-amalgamated algebras},
url = {http://eudml.org/doc/297404},
volume = {70},
year = {2020},
}
TY - JOUR
AU - Mahdou, Najib
AU - Moutui, Moutu Abdou Salam
TI - Gaussian and Prüfer conditions in bi-amalgamated algebras
JO - Czechoslovak Mathematical Journal
PY - 2020
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 70
IS - 2
SP - 381
EP - 391
AB - Let $f\colon A\rightarrow B$ and $g\colon A\rightarrow C$ be two ring homomorphisms and let $J$ and $J^{\prime }$ be ideals of $B$ and $C$, respectively, such that $f^{-1}(J)=g^{-1}(J^{\prime })$. In this paper, we investigate the transfer of the notions of Gaussian and Prüfer rings to the bi-amalgamation of $A$ with $(B,C)$ along $(J,J^{\prime })$ with respect to $(f,g)$ (denoted by $A\bowtie ^{f,g}(J,J^{\prime })),$ introduced and studied by S. Kabbaj, K. Louartiti and M. Tamekkante in 2013. Our results recover well known results on amalgamations in C. A. Finocchiaro (2014) and generate new original examples of rings possessing these properties.
LA - eng
KW - bi-amalgamation; amalgamated algebra; Gaussian ring; Prüfer ring
UR - http://eudml.org/doc/297404
ER -
References
top- Abuhlail, J., Jarrar, M., Kabbaj, S., 10.1016/j.jpaa.2011.02.008, J. Pure Appl. Algebra 215 (2011), 2504-2511. (2011) Zbl1226.13014MR2793953DOI10.1016/j.jpaa.2011.02.008
- Bakkari, C., Kabbaj, S., Mahdou, N., /10.1016/j.jpaa.2009.04.011, J. Pure Appl. Algebra 214 (2010), 53-60. (2010) Zbl1175.13008MR2561766DOI/10.1016/j.jpaa.2009.04.011
- Bazzoni, S., Glaz, S., 10.1007/978-0-387-36717-0_4, Multiplicative Ideal Theory in Commutative Algebra J. W. Brewer et al. Springer, New York (2006), 55-72. (2006) Zbl1115.13024MR2265801DOI10.1007/978-0-387-36717-0_4
- Bazzoni, S., Glaz, S., 10.1016/j.jalgebra.2007.01.004, J. Algebra 310 (2007), 180-193. (2007) Zbl1118.13020MR2307788DOI10.1016/j.jalgebra.2007.01.004
- Boisen, M. B., Sheldon, P. B., 10.4153/CJM-1977-076-6, Can. J. Math. 29 (1977), 722-737. (1977) Zbl0363.13002MR0447205DOI10.4153/CJM-1977-076-6
- Butts, H. S., Smith, W., 10.1007/BF01111523, Math. Z. 95 (1967), 196-211. (1967) Zbl0153.37003MR0209271DOI10.1007/BF01111523
- Campanini, F., Finocchiaro, C. A., 10.1142/S0219498819501482, J. Algebra Appl. 18 (2019), Article ID 1950148, 16 pages. (2019) Zbl07096463MR3977809DOI10.1142/S0219498819501482
- Chhiti, M., Jarrar, M., Kabbaj, S., Mahdou, N., 10.1080/00927872.2014.897575, Commun. Algebra 43 (2015), 249-261. (2015) Zbl1327.13063MR3240418DOI10.1080/00927872.2014.897575
- D'Anna, M., 10.1016/j.jalgebra.2005.12.023, J. Algebra 306 (2006), 507-519. (2006) Zbl1120.13022MR2271349DOI10.1016/j.jalgebra.2005.12.023
- D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and its Applications M. Fontana et al. Walter de Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
- D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633-1641. (2010) Zbl1191.13006MR2593689DOI10.1016/j.jpaa.2009.12.008
- D'Anna, M., Fontana, M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (2007), 443-459. (2007) Zbl1126.13002MR2337762DOI10.1142/S0219498807002326
- Finocchiaro, C. A., Prüfer-like conditions on an amalgamated algebra along an ideal, Houston J. Math. 40 (2014), 63-79. (2014) Zbl1297.13002MR3210554
- Fuchs, L., 10.1007/BF02565607, Comment. Math. Helv. 23 (1949), 334-341 German. (1949) Zbl0040.30103MR0032583DOI10.1007/BF02565607
- Glaz, S., 10.1201/9781420028249.ch17, Arithmetical Properties of Commutative Rings and Monoids S. T. Chapman Lecture Notes in Pure Applied Mathematics 241, Chapman & Hall/CRC, Boca Raton (2005), 272-281. (2005) Zbl1107.13023MR2140700DOI10.1201/9781420028249.ch17
- Glaz, S., 10.1090/S0002-9939-05-08093-7, Proc. Am. Math. Soc. 133 (2005), 2507-2513. (2005) Zbl1077.13009MR2146192DOI10.1090/S0002-9939-05-08093-7
- Griffin, M., 10.1515/crll.1969.239-240.55, J. Reine Angew. Math. 239-240 (1969), 55-67. (1969) Zbl0185.09801MR0255527DOI10.1515/crll.1969.239-240.55
- Kabbaj, S., Louartiti, K., Tamekkante, M., 10.1216/JCA-2017-9-1-65, J. Commut. Algebra 9 (2017), 65-87. (2017) Zbl1390.13008MR3631827DOI10.1216/JCA-2017-9-1-65
- Kabbaj, S., Mahdou, N., Moutui, M. A. S., 10.1142/S021949881750030X, J. Algebra Appl. 16 (2017), Article ID 1750030, 11 pages. (2017) Zbl1390.13057MR3608417DOI10.1142/S021949881750030X
- Koehler, A., 10.1007/BF01359713, Math. Ann. 189 (1970), 311-316. (1970) Zbl0198.05602MR0280536DOI10.1007/BF01359713
- Krull, W., 10.1007/BF01180441, Math. Z. 41 (1936), 545-577 German. (1936) Zbl0015.00203MR1545640DOI10.1007/BF01180441
- Loper, K. A., Roitman, M., 10.1090/S0002-9939-04-07826-8, Proc. Am. Math. Soc. 133 (2005), 1267-1271. (2005) Zbl1137.13301MR2111931DOI10.1090/S0002-9939-04-07826-8
- Lucas, T. G., 10.1090/S0002-9939-05-07977-3, Proc. Am. Math. Soc. 133 (2005), 1881-1886. (2005) Zbl1154.13301MR2137851DOI10.1090/S0002-9939-05-07977-3
- Prüfer, H., 10.1515/crll.1932.168.1, J. Reine Angew. Math. 168 (1932), 1-36 German. (1932) Zbl0004.34001MR1581355DOI10.1515/crll.1932.168.1
- Tsang, H., Gauss's Lemma, Ph.D. Thesis, University of Chicago, Chicago (1965). (1965) MR2611536
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.