A convex treatment of numerical radius inequalities
Zahra Heydarbeygi; Mohammad Sababheh; Hamid Moradi
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 601-614
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHeydarbeygi, Zahra, Sababheh, Mohammad, and Moradi, Hamid. "A convex treatment of numerical radius inequalities." Czechoslovak Mathematical Journal 72.2 (2022): 601-614. <http://eudml.org/doc/298304>.
@article{Heydarbeygi2022,
abstract = {We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain such versions.},
author = {Heydarbeygi, Zahra, Sababheh, Mohammad, Moradi, Hamid},
journal = {Czechoslovak Mathematical Journal},
keywords = {numerical radius; operator norm; mixed Schwarz inequality},
language = {eng},
number = {2},
pages = {601-614},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A convex treatment of numerical radius inequalities},
url = {http://eudml.org/doc/298304},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Heydarbeygi, Zahra
AU - Sababheh, Mohammad
AU - Moradi, Hamid
TI - A convex treatment of numerical radius inequalities
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 601
EP - 614
AB - We prove an inner product inequality for Hilbert space operators. This inequality will be utilized to present a general numerical radius inequality using convex functions. Applications of the new results include obtaining new forms that generalize and extend some well known results in the literature, with an application to the newly defined generalized numerical radius. We emphasize that the approach followed in this article is different from the approaches used in the literature to obtain such versions.
LA - eng
KW - numerical radius; operator norm; mixed Schwarz inequality
UR - http://eudml.org/doc/298304
ER -
References
top- Abu-Omar, A., Kittaneh, F., 10.1016/j.laa.2019.01.019, Linear Algebra Appl. 569 (2019), 323-334. (2019) Zbl07060516MR3907855DOI10.1016/j.laa.2019.01.019
- Aujla, J. S., Silva, F. C., 10.1016/S0024-3795(02)00720-6, Linear Algebra Appl. 369 (2003), 217-233. (2003) Zbl1031.47007MR1988488DOI10.1016/S0024-3795(02)00720-6
- Baklouti, H., Feki, K., Ahmed, O. A. M. Sid, 10.1016/j.laa.2018.06.021, Linear Algebra Appl. 555 (2018), 266-284. (2018) Zbl06914727MR3834203DOI10.1016/j.laa.2018.06.021
- Bhunia, P., Bhanja, A., Bag, S., Paul, K., 10.1007/s43034-020-00102-9, Ann. Funct. Anal. 12 (2021), Article ID 18, 23 pages. (2021) Zbl07296618MR4181696DOI10.1007/s43034-020-00102-9
- Bhunia, P., Paul, K., Nayak, R. K., 10.7153/mia-2021-24-12, Math. Inequal. Appl. 24 (2021), 167-183. (2021) Zbl07354296MR4221344DOI10.7153/mia-2021-24-12
- Buzano, M. L., Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Semin. Mat., Torino Italian 31 (1974), 405-409. (1974) Zbl0285.46016MR0344857
- Dragomir, S. S., Some refinements of Schwartz inequality, Proceedings of the Symposium of Mathematics and Its Applications Timişoara Research Centre of the Romanian Academy, Timişoara (1986), 13-16. (1986) Zbl0594.46018
- Dragomir, S. S., Power inequalities for the numerical radius of a product of two operators in Hilbert spaces, Sarajevo J. Math. 5 (2009), 269-278. (2009) Zbl1225.47008MR2567758
- Dragomir, S. S., 10.1007/978-3-319-01448-7, SpringerBriefs in Mathematics. Springer, Cham (2013). (2013) Zbl1302.47001MR3112193DOI10.1007/978-3-319-01448-7
- El-Haddad, M., Kittaneh, F., 10.4064/sm182-2-3, Stud. Math. 182 (2007), 133-140. (2007) Zbl1130.47003MR2338481DOI10.4064/sm182-2-3
- Halmos, P. R., 10.1007/978-1-4684-9330-6, Graduate Texts in Mathematics 19. Springer, New York (1982). (1982) Zbl0496.47001MR0675952DOI10.1007/978-1-4684-9330-6
- Kittaneh, F., 10.4064/sm158-1-2, Stud. Math. 158 (2003), 11-17. (2003) Zbl1113.15302MR2014548DOI10.4064/sm158-1-2
- Kittaneh, F., 10.1016/j.laa.2003.11.023, Linear Algebra Appl. 383 (2004), 85-91. (2004) Zbl1063.47005MR2073894DOI10.1016/j.laa.2003.11.023
- Kittaneh, F., 10.4064/sm168-1-5, Stud. Math. 168 (2005), 73-80. (2005) Zbl1072.47004MR2133388DOI10.4064/sm168-1-5
- Moradi, H. R., Sababheh, M., 10.1080/03081087.2019.1703886, Linear Multilinear Algebra 69 (2021), 921-933. (2021) Zbl07333202MR4230456DOI10.1080/03081087.2019.1703886
- Omidvar, M. E., Moradi, H. R., Shebrawi, K., 10.7153/oam-2018-12-26, Oper. Matrices 12 (2018), 407-416. (2018) Zbl06905101MR3812182DOI10.7153/oam-2018-12-26
- Pečarić, J., Furuta, T., Hot, J. Mićić, Seo, Y., Mond-Pečarić Method in Operator Inequalities: Inequalities for Bounded Selfadjoint Operators on a Hilbert Space, Monographs in Inequalities 1. Element, Zagreb (2005). (2005) Zbl1135.47012MR3026316
- Sababheh, M., 10.1016/j.laa.2018.03.025, Linear Algebra Appl. 549 (2018), 67-78. (2018) Zbl06866366MR3784336DOI10.1016/j.laa.2018.03.025
- Sababheh, M., 10.1080/03081087.2018.1440518, Linear Multilinear Algebra 67 (2019), 953-964. (2019) Zbl07048433MR3923038DOI10.1080/03081087.2018.1440518
- Sababheh, M., Moradi, H. R., 10.1080/03081087.2019.1651815, Linear Multilinear Algebra 69 (2021), 1964-1973. (2021) Zbl07394476MR4279169DOI10.1080/03081087.2019.1651815
- Zamani, A., 10.1016/j.laa.2019.05.012, Linear Algebra Appl. 578 (2019), 159-183. (2019) Zbl07099557MR3953041DOI10.1016/j.laa.2019.05.012
- Zamani, A., Moslehian, M. S., Xu, Q., Fu, C., 10.1007/s00009-020-01665-6, Mediterr. J. Math. 18 (2021), Article ID 38, 13 pages. (2021) Zbl07302838MR4203694DOI10.1007/s00009-020-01665-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.