Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems
Chang-Ho Song; Yong-Gon Ri; Cholmin Sin
Applications of Mathematics (2022)
- Volume: 67, Issue: 4, page 431-444
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSong, Chang-Ho, Ri, Yong-Gon, and Sin, Cholmin. "Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems." Applications of Mathematics 67.4 (2022): 431-444. <http://eudml.org/doc/298314>.
@article{Song2022,
abstract = {In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^\{-1\}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic $p$-curl systems.},
author = {Song, Chang-Ho, Ri, Yong-Gon, Sin, Cholmin},
journal = {Applications of Mathematics},
language = {eng},
number = {4},
pages = {431-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text \{curl\}$ systems},
url = {http://eudml.org/doc/298314},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Song, Chang-Ho
AU - Ri, Yong-Gon
AU - Sin, Cholmin
TI - Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 431
EP - 444
AB - In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence of Galerkin approximations to the solution of steady-state electromagnetic $p$-curl systems.
LA - eng
UR - http://eudml.org/doc/298314
ER -
References
top- Antontsev, S., Miranda, F., Santos, L., 10.1016/j.na.2012.02.011, Nonlinear Anal., Theory Methods Appl., Ser. A 75 (2012), 3916-3929. (2012) Zbl1246.35102MR2914580DOI10.1016/j.na.2012.02.011
- Antontsev, S., Miranda, F., Santos, L., 10.1016/j.jmaa.2016.03.045, J. Math. Anal. Appl. 440 (2016), 300-322 \99999DOI99999 10.1016/j.jmaa.2016.03.045 . (2016) Zbl1339.35060MR3479601DOI10.1016/j.jmaa.2016.03.045
- Aramaki, J., $L^p$ theory for the div-curl system, Int. J. Math. Anal., Ruse 8 (2014), 259-271 \99999DOI99999 10.12988/ijma.2014.4112 . (2014) MR3188605
- Bahrouni, A., Repovš, D., Existence and nonexistence of solutions for $p(x)$-curl systems arising in electromagnetism, Complex Var. Elliptic Equ. 63 (2018), 292-301 \99999DOI99999 10.1080/17476933.2017.1304390 . (2018) Zbl1423.35124MR3764762
- Barbu, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces, Springer Monographs in Mathematics. Springer, Berlin (2010),\99999DOI99999 10.1007/978-1-4419-5542-5 . (2010) Zbl1197.35002MR2582280
- Cimrák, I., Keer, R. Van, Level set method for the inverse elliptic problem in nonlinear electromagnetism, J. Comput. Phys. 229 (2010), 9269-9283 \99999DOI99999 10.1016/j.jcp.2010.08.038 . (2010) Zbl1207.78045MR2733153
- Dunford, N., Schwartz, J. T., Linear Operators. I. General Theory, Pure and Applied Mathematics 7. Interscience Publishers, New York (1958),\99999MR99999 0117523 . (1958) Zbl0084.10402MR0117523
- u, J. Franc\accent23, Monotone operators: A survey directed to applications to differential equations, Appl. Math. 35 (1990), 257-301 \99999DOI99999 10.21136/AM.1990.104411 . (1990) Zbl0724.47025MR1065003
- Gajewski, H., Gröger, K., Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien. II. Abteilung. Band 38. Akademie, Berlin (1974), German \99999MR99999 0636412 . (1974) Zbl0289.47029MR0636412
- Gerbeau, J.-F., Bris, C. Le, Lelièvre, T., Mathematical Methods for the Magnetohydrodynamics of Liquid Metals, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2006),\99999DOI99999 10.1093/acprof:oso/9780198566656.001.0001 . (2006) Zbl1107.76001MR2289481
- Janíková, E., Slodička, M., Fully discrete linear approximation scheme for electric field diffusion in type-II superconductors, J. Comput. Appl. Math. 234 (2010), 2054-2061 \99999DOI99999 10.1016/j.cam.2009.08.063 . (2010) Zbl1195.82105MR2652398
- László, S. C., The Theory of Monotone Operators with Applications, Babes-Bolyai University, Budapest (2011) .
- Xiang, M., Wang, F., Zhang, B., Existence and multiplicity for $p(x)$-curl systems arising in electromagnetism, J. Math. Anal. Appl. 448 (2017), 1600-1617 \99999DOI99999 10.1016/j.jmaa.2016.11.086 . (2017) Zbl1358.35181MR3582298
- Zeidler, E., 10.1007/978-1-4612-0981-2, Springer, New York (1990). (1990) Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0981-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.