Some remarks on the cardinality of sets
Učitel matematiky (2022)
- Volume: 030, Issue: 2, page 92-103
- ISSN: 1210-9037
Access Full Article
topAbstract
topHow to cite
topMartišek, Dalibor. "Několik poznámek k mohutnosti množin." Učitel matematiky 030.2 (2022): 92-103. <http://eudml.org/doc/298322>.
@article{Martišek2022,
abstract = {Text je stručným přehledem nejdůležitějších vlastností nekonečných množin, mimo jiné vyvrací omyl publikovaný v článku Kuřina & Vondrová: Nekonečno, jak to vlastně je, UM 2003. "Zip Petera Zamarovského" není bijekcí mezi (0;1)x(0;1) a (0;1), ale pouze injekcí, tudíž ekvivalenci množiny všech bodů čtverce a úsečky nedokazuje. V článku je naznačen jiný důkaz.},
author = {Martišek, Dalibor},
journal = {Učitel matematiky},
language = {cze},
number = {2},
pages = {92-103},
publisher = {Jednota českých matematiků a fyziků},
title = {Několik poznámek k mohutnosti množin},
url = {http://eudml.org/doc/298322},
volume = {030},
year = {2022},
}
TY - JOUR
AU - Martišek, Dalibor
TI - Několik poznámek k mohutnosti množin
JO - Učitel matematiky
PY - 2022
PB - Jednota českých matematiků a fyziků
VL - 030
IS - 2
SP - 92
EP - 103
AB - Text je stručným přehledem nejdůležitějších vlastností nekonečných množin, mimo jiné vyvrací omyl publikovaný v článku Kuřina & Vondrová: Nekonečno, jak to vlastně je, UM 2003. "Zip Petera Zamarovského" není bijekcí mezi (0;1)x(0;1) a (0;1), ale pouze injekcí, tudíž ekvivalenci množiny všech bodů čtverce a úsečky nedokazuje. V článku je naznačen jiný důkaz.
LA - cze
UR - http://eudml.org/doc/298322
ER -
References
top- Kuřina, F., Vondrová, N., Jak to vlastně je? Nekonečno, (2021). Učitel matematiky, 29(2), 111-127.
- Zamarovský, P., Mýtus nekonečna, (2018). Karolinum.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.