Porous media equation on locally finite graphs
Archivum Mathematicum (2022)
- Volume: 058, Issue: 3, page 177-187
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMa, Li. "Porous media equation on locally finite graphs." Archivum Mathematicum 058.3 (2022): 177-187. <http://eudml.org/doc/298334>.
@article{Ma2022,
abstract = {In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs.},
author = {Ma, Li},
journal = {Archivum Mathematicum},
keywords = {Bochner formula; heat equation; global solution; stochastic completeness; porous-media equation; McKean type estimate},
language = {eng},
number = {3},
pages = {177-187},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Porous media equation on locally finite graphs},
url = {http://eudml.org/doc/298334},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Ma, Li
TI - Porous media equation on locally finite graphs
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 3
SP - 177
EP - 187
AB - In this paper, we consider two typical problems on a locally finite connected graph. The first one is to study the Bochner formula for the Laplacian operator on a locally finite connected graph. The other one is to obtain global nontrivial nonnegative solution to porous-media equation via the use of Aronson-Benilan argument. We use the curvature dimension condition to give a characterization two point graph. We also give a porous-media equation criterion about stochastic completeness of the graph. There is not much work in the direction of the study of nonlinear heat equations on locally finite connected graphs.
LA - eng
KW - Bochner formula; heat equation; global solution; stochastic completeness; porous-media equation; McKean type estimate
UR - http://eudml.org/doc/298334
ER -
References
top- Bauer, F., Horn, P., Yong, Lin, Lippner, G., Mangoubi, D., Shing-Tung, Yau, 10.4310/jdg/1424880980, J. Differential Geom. 99 (3) (2015), 359–405. (2015) MR3316971DOI10.4310/jdg/1424880980
- Chavel, I., Karp, L., 10.1007/BF02566664, Comment. Math. Helv. 66 (4) (1991), 541–556, DOI 10.1007/BF02566664. (1991) MR1129796DOI10.1007/BF02566664
- Chung, F.R.K., Spectral graph theory, CBMS Regional Conf. Ser. in Math., 1997. xii+207 pp. ISBN: 0-8218-0315-8. (1997) MR1421568
- Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R., 10.4171/JST/35, J. Spectr. Theory 2 (4) (2012), 397–432. (2012) MR2947294DOI10.4171/JST/35
- Horn, P., Yong, Lin, Shuang, Liu, Shing-Tung, Yau, Volume doubling, Poincaré inequality and Gaussian heat kernel estimate for non-negatively curved graphs, arXiv:1411. 5087v4. MR4036571
- Ji, L., Mazzeo, R., Sesum, N., 10.1007/s00208-009-0377-x, Math. Ann. 345 (2009), 819–834. (2009) MR2545867DOI10.1007/s00208-009-0377-x
- Keller, M., Lenz, D., 10.1051/mmnp/20105409, Math. Model. Nat. Phenom. 5 (4) (2010), 198–224. (2010) MR2662456DOI10.1051/mmnp/20105409
- Lin, Y., Liu, S., Equivalent properties of CD inequality on grap, arXiv:1512.02677, 2015. (2015) MR4545901
- Lin, Y., Yau, S.T., 10.4310/MRL.2010.v17.n2.a13, Math. Res. Lett. 17 (2010), 343–356. (2010) MR2644381DOI10.4310/MRL.2010.v17.n2.a13
- Ma, L., Harnack’s inequality and Green’s functions on locally finite graphs, Nonlinear Anal. 170 (2018), 226–237. (2018) MR3765562
- Ma, L., Wang, X.Y., 10.1007/s11425-013-4577-1, Sci. China Math. 56 (4) (2013), 771–776. (2013) MR3034839DOI10.1007/s11425-013-4577-1
- Ma, L., Witt, I., 10.1016/j.cnsns.2017.11.002, Commun. Nonlinear Sci. Numer. Simul. 59 (2018), 158–164. (2018) MR3758379DOI10.1016/j.cnsns.2017.11.002
- Weber, A., 10.1016/j.jmaa.2010.04.044, J. Math. Anal. Appl. 370 (1) (2010), 146–158. (2010) MR2651136DOI10.1016/j.jmaa.2010.04.044
- Wojciechowski, R.K., 10.1512/iumj.2009.58.3575, Indiana Univ. Math. J. 58 (3) (2009), 1419–1441. (2009) MR2542093DOI10.1512/iumj.2009.58.3575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.