Congruences for certain families of Apéry-like sequences
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 3, page 875-912
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSun, Zhi-Hong. "Congruences for certain families of Apéry-like sequences." Czechoslovak Mathematical Journal 72.3 (2022): 875-912. <http://eudml.org/doc/298454>.
@article{Sun2022,
abstract = {We systematically investigate the expressions and congruences for both a one-parameter family $\lbrace G_n(x)\rbrace $ as well as a two-parameter family $\lbrace G_n(r,m)\rbrace $ of sequences.},
author = {Sun, Zhi-Hong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form},
language = {eng},
number = {3},
pages = {875-912},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruences for certain families of Apéry-like sequences},
url = {http://eudml.org/doc/298454},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Sun, Zhi-Hong
TI - Congruences for certain families of Apéry-like sequences
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 875
EP - 912
AB - We systematically investigate the expressions and congruences for both a one-parameter family $\lbrace G_n(x)\rbrace $ as well as a two-parameter family $\lbrace G_n(r,m)\rbrace $ of sequences.
LA - eng
KW - Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form
UR - http://eudml.org/doc/298454
ER -
References
top- Ahlgren, S., 10.1007/978-1-4613-0257-5_1, Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics Developments in Mathematics 4. Kluwer Academic, Dordrecht (2001), 1-12. (2001) Zbl1037.33016MR1880076DOI10.1007/978-1-4613-0257-5_1
- Almkvist, G., Zudilin, W., Differential equations, mirror maps and zeta values, Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 481-515. (2006) Zbl1118.14043MR2282972
- Apéry, R., Irrationalité de et , Astérisque 61 (1979), 11-13 French. (1979) Zbl0401.10049MR3363457
- Gould, H. W., Combinatorial Identities. A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, West Virginia University, Morgantown (1972). (1972) Zbl0241.05011MR0354401
- Granville, A., Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers, Organic Mathematics CMS Conference Proceedings 20. AMS, Providence (1997), 253-276. (1997) Zbl0903.11005MR1483922
- Guo, V. J. W., 10.1016/j.jmaa.2016.06.028, J. Math. Anal. Appl. 444 (2016), 182-191. (2016) Zbl1383.11030MR3523373DOI10.1016/j.jmaa.2016.06.028
- Liu, J.-C., Ni, H.-X., 10.21136/CMJ.2021.0384-20, Czech. Math. J. 71 (2021), 1211-1219. (2021) Zbl07442486MR4339123DOI10.21136/CMJ.2021.0384-20
- Mortenson, E., 10.1090/S0002-9939-04-07697-X, Proc. Am. Math. Soc. 133 (2005), 321-330. (2005) Zbl1152.11327MR2093051DOI10.1090/S0002-9939-04-07697-X
- Petkovšek, M., Wilf, H. S., Zeilberger, D., , A. K. Peters, Wellesley (1996). (1996) Zbl0848.05002MR1379802
- Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, Available at http://oeis.org. Zbl1159.11327
- Sun, Z.-H., 10.1016/S0166-218X(00)00184-0, Discrete Appl. Math. 105 (2000), 193-223. (2000) Zbl0990.11008MR1780472DOI10.1016/S0166-218X(00)00184-0
- Sun, Z.-H., 10.1016/j.jnt.2007.03.003, J. Number Theory 128 (2008), 280-312. (2008) Zbl1154.11010MR2380322DOI10.1016/j.jnt.2007.03.003
- Sun, Z.-H., 10.1090/S0002-9939-2010-10566-X, Proc. Am. Math. Soc. 139 (2011), 1915-1929. (2011) Zbl1225.11006MR2775368DOI10.1090/S0002-9939-2010-10566-X
- Sun, Z.-H., 10.1142/S1793042112500121, Int. J. Number Theory 8 (2012), 207-225. (2012) Zbl1290.11048MR2887891DOI10.1142/S1793042112500121
- Sun, Z.-H., 10.1016/j.jnt.2012.11.004, J. Number Theory 133 (2013), 1950-1976. (2013) Zbl1277.11002MR3027947DOI10.1016/j.jnt.2012.11.004
- Sun, Z.-H., 10.1016/j.jnt.2012.10.001, J. Number Theory 133 (2013), 1572-1595. (2013) Zbl1300.11007MR3007123DOI10.1016/j.jnt.2012.10.001
- Sun, Z.-H., 10.4064/aa159-2-6, Acta Arith. 159 (2013), 169-200. (2013) Zbl1287.11004MR3062914DOI10.4064/aa159-2-6
- Sun, Z.-H., 10.1016/j.jnt.2014.04.012, J. Number Theory 143 (2014), 293-319. (2014) Zbl1353.11005MR3227350DOI10.1016/j.jnt.2014.04.012
- Sun, Z.-H., 10.1142/S1793042115501110, Int. J. Number Theory 11 (2015), 2393-2404. (2015) Zbl1388.11004MR3420752DOI10.1142/S1793042115501110
- Sun, Z.-H., 10.1142/S1793042116500779, Int. J. Number Theory 12 (2016), 1259-1271. (2016) Zbl1419.11005MR3498625DOI10.1142/S1793042116500779
- Sun, Z.-H., 10.1090/proc/13005, Proc. Am. Math. Soc. 144 (2016), 3295-3308. (2016) Zbl1388.11005MR3503698DOI10.1090/proc/13005
- Sun, Z.-H., 10.1080/10236198.2018.1515930, J. Difference Equ. Appl. 24 (2018), 1685-1713. (2018) Zbl1446.11007MR3867051DOI10.1080/10236198.2018.1515930
- Sun, Z.-H., 10.5486/PMD.2020.8577, Publ. Math. 96 (2020), 315-346. (2020) Zbl1474.11002MR4108043DOI10.5486/PMD.2020.8577
- Sun, Z.-H., 10.4064/aa200308-27-9, Acta Arith. 199 (2021), 1-32. (2021) Zbl1472.11026MR4262886DOI10.4064/aa200308-27-9
- Sun, Z.-W., 10.1007/s11425-011-4302-x, Sci. China, Math. 54 (2011), 2509-2535. (2011) Zbl1256.11011MR2861289DOI10.1007/s11425-011-4302-x
- Sun, Z.-W., 10.4064/aa156-2-2, Acta Arith. 156 (2012), 123-141. (2012) Zbl1269.11019MR2997562DOI10.4064/aa156-2-2
- Sun, Z.-W., Conjectures and results on mod with , Number Theory and Related Areas Advanced Lectures in Mathematics (ALM) 27. International Press, Somerville (2013), 149-197. (2013) Zbl1317.11034MR3185874
- Sun, Z.-W., 10.3969/j.issn.0469-5097.2014.02.004, J. Nanjing Univ., Math. Biq. 31 (2014), 150-164. (2014) Zbl1324.11008MR3362545DOI10.3969/j.issn.0469-5097.2014.02.004
- Sun, Z.-W., 10.3969/j.issn.0469-5097.2015.02.006, J. Nanjing Univ., Math. Biq. 32 (2015), 189-218. (2015) Zbl1349.11127MR3616300DOI10.3969/j.issn.0469-5097.2015.02.006
- Sun, Z.-W., 10.1016/j.ffa.2017.03.007, Finite Fields Appl. 46 (2017), 179-216. (2017) Zbl1406.11007MR3655755DOI10.1016/j.ffa.2017.03.007
- Tauraso, R., Supercongruences for a truncated hypergeometric series, Integers 12 (2012), Article ID A45, 12 pages. (2012) Zbl1301.11020MR3083418
- Tauraso, R., 10.1142/S1793042118500689, Int. J. Number Theory 14 (2018), 1093-1109. (2018) Zbl1421.11008MR3801086DOI10.1142/S1793042118500689
- Enckevort, C. van, Straten, D. van, 10.1090/amsip/038/23, Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 539-559. (2006) Zbl1117.14043MR2282974DOI10.1090/amsip/038/23
- Wang, C., 10.1007/s11139-020-00283-w, Ramanujan J. 56 (2021), 1111-1121. (2021) Zbl07438419MR4341113DOI10.1007/s11139-020-00283-w
- Wang, C., Sun, Z.-W., 10.1016/j.jmaa.2021.125575, J. Math. Anal. Appl. 505 (2022), Article ID 125575, 20 pages. (2022) Zbl07412972MR4302676DOI10.1016/j.jmaa.2021.125575
- Zagier, D., 10.1090/crmp/047, Groups and Symmetries CRM Proceedings and Lecture Notes 47. AMS, Providence (2009), 349-366. (2009) Zbl1244.11042MR2500571DOI10.1090/crmp/047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.