Congruences for certain families of Apéry-like sequences

Zhi-Hong Sun

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 875-912
  • ISSN: 0011-4642

Abstract

top
We systematically investigate the expressions and congruences for both a one-parameter family { G n ( x ) } as well as a two-parameter family { G n ( r , m ) } of sequences.

How to cite

top

Sun, Zhi-Hong. "Congruences for certain families of Apéry-like sequences." Czechoslovak Mathematical Journal 72.3 (2022): 875-912. <http://eudml.org/doc/298454>.

@article{Sun2022,
abstract = {We systematically investigate the expressions and congruences for both a one-parameter family $\lbrace G_n(x)\rbrace $ as well as a two-parameter family $\lbrace G_n(r,m)\rbrace $ of sequences.},
author = {Sun, Zhi-Hong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form},
language = {eng},
number = {3},
pages = {875-912},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Congruences for certain families of Apéry-like sequences},
url = {http://eudml.org/doc/298454},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Sun, Zhi-Hong
TI - Congruences for certain families of Apéry-like sequences
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 875
EP - 912
AB - We systematically investigate the expressions and congruences for both a one-parameter family $\lbrace G_n(x)\rbrace $ as well as a two-parameter family $\lbrace G_n(r,m)\rbrace $ of sequences.
LA - eng
KW - Apéry-like number; congruence; combinatorial identity; Bernoulli polynomial; binary quadratic form
UR - http://eudml.org/doc/298454
ER -

References

top
  1. Ahlgren, S., 10.1007/978-1-4613-0257-5_1, Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics Developments in Mathematics 4. Kluwer Academic, Dordrecht (2001), 1-12. (2001) Zbl1037.33016MR1880076DOI10.1007/978-1-4613-0257-5_1
  2. Almkvist, G., Zudilin, W., Differential equations, mirror maps and zeta values, Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 481-515. (2006) Zbl1118.14043MR2282972
  3. Apéry, R., Irrationalité de ζ ( 2 ) et ζ ( 3 ) , Astérisque 61 (1979), 11-13 French. (1979) Zbl0401.10049MR3363457
  4. Gould, H. W., Combinatorial Identities. A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, West Virginia University, Morgantown (1972). (1972) Zbl0241.05011MR0354401
  5. Granville, A., Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers, Organic Mathematics CMS Conference Proceedings 20. AMS, Providence (1997), 253-276. (1997) Zbl0903.11005MR1483922
  6. Guo, V. J. W., 10.1016/j.jmaa.2016.06.028, J. Math. Anal. Appl. 444 (2016), 182-191. (2016) Zbl1383.11030MR3523373DOI10.1016/j.jmaa.2016.06.028
  7. Liu, J.-C., Ni, H.-X., 10.21136/CMJ.2021.0384-20, Czech. Math. J. 71 (2021), 1211-1219. (2021) Zbl07442486MR4339123DOI10.21136/CMJ.2021.0384-20
  8. Mortenson, E., 10.1090/S0002-9939-04-07697-X, Proc. Am. Math. Soc. 133 (2005), 321-330. (2005) Zbl1152.11327MR2093051DOI10.1090/S0002-9939-04-07697-X
  9. Petkovšek, M., Wilf, H. S., Zeilberger, D., A = B , A. K. Peters, Wellesley (1996). (1996) Zbl0848.05002MR1379802
  10. Sloane, N. J. A., The On-Line Encyclopedia of Integer Sequences, Available at http://oeis.org. Zbl1159.11327
  11. Sun, Z.-H., 10.1016/S0166-218X(00)00184-0, Discrete Appl. Math. 105 (2000), 193-223. (2000) Zbl0990.11008MR1780472DOI10.1016/S0166-218X(00)00184-0
  12. Sun, Z.-H., 10.1016/j.jnt.2007.03.003, J. Number Theory 128 (2008), 280-312. (2008) Zbl1154.11010MR2380322DOI10.1016/j.jnt.2007.03.003
  13. Sun, Z.-H., 10.1090/S0002-9939-2010-10566-X, Proc. Am. Math. Soc. 139 (2011), 1915-1929. (2011) Zbl1225.11006MR2775368DOI10.1090/S0002-9939-2010-10566-X
  14. Sun, Z.-H., 10.1142/S1793042112500121, Int. J. Number Theory 8 (2012), 207-225. (2012) Zbl1290.11048MR2887891DOI10.1142/S1793042112500121
  15. Sun, Z.-H., 10.1016/j.jnt.2012.11.004, J. Number Theory 133 (2013), 1950-1976. (2013) Zbl1277.11002MR3027947DOI10.1016/j.jnt.2012.11.004
  16. Sun, Z.-H., 10.1016/j.jnt.2012.10.001, J. Number Theory 133 (2013), 1572-1595. (2013) Zbl1300.11007MR3007123DOI10.1016/j.jnt.2012.10.001
  17. Sun, Z.-H., 10.4064/aa159-2-6, Acta Arith. 159 (2013), 169-200. (2013) Zbl1287.11004MR3062914DOI10.4064/aa159-2-6
  18. Sun, Z.-H., 10.1016/j.jnt.2014.04.012, J. Number Theory 143 (2014), 293-319. (2014) Zbl1353.11005MR3227350DOI10.1016/j.jnt.2014.04.012
  19. Sun, Z.-H., 10.1142/S1793042115501110, Int. J. Number Theory 11 (2015), 2393-2404. (2015) Zbl1388.11004MR3420752DOI10.1142/S1793042115501110
  20. Sun, Z.-H., 10.1142/S1793042116500779, Int. J. Number Theory 12 (2016), 1259-1271. (2016) Zbl1419.11005MR3498625DOI10.1142/S1793042116500779
  21. Sun, Z.-H., 10.1090/proc/13005, Proc. Am. Math. Soc. 144 (2016), 3295-3308. (2016) Zbl1388.11005MR3503698DOI10.1090/proc/13005
  22. Sun, Z.-H., 10.1080/10236198.2018.1515930, J. Difference Equ. Appl. 24 (2018), 1685-1713. (2018) Zbl1446.11007MR3867051DOI10.1080/10236198.2018.1515930
  23. Sun, Z.-H., 10.5486/PMD.2020.8577, Publ. Math. 96 (2020), 315-346. (2020) Zbl1474.11002MR4108043DOI10.5486/PMD.2020.8577
  24. Sun, Z.-H., 10.4064/aa200308-27-9, Acta Arith. 199 (2021), 1-32. (2021) Zbl1472.11026MR4262886DOI10.4064/aa200308-27-9
  25. Sun, Z.-W., 10.1007/s11425-011-4302-x, Sci. China, Math. 54 (2011), 2509-2535. (2011) Zbl1256.11011MR2861289DOI10.1007/s11425-011-4302-x
  26. Sun, Z.-W., 10.4064/aa156-2-2, Acta Arith. 156 (2012), 123-141. (2012) Zbl1269.11019MR2997562DOI10.4064/aa156-2-2
  27. Sun, Z.-W., Conjectures and results on x 2 mod p 2 with 4 p = x 2 + d y 2 , Number Theory and Related Areas Advanced Lectures in Mathematics (ALM) 27. International Press, Somerville (2013), 149-197. (2013) Zbl1317.11034MR3185874
  28. Sun, Z.-W., 10.3969/j.issn.0469-5097.2014.02.004, J. Nanjing Univ., Math. Biq. 31 (2014), 150-164. (2014) Zbl1324.11008MR3362545DOI10.3969/j.issn.0469-5097.2014.02.004
  29. Sun, Z.-W., 10.3969/j.issn.0469-5097.2015.02.006, J. Nanjing Univ., Math. Biq. 32 (2015), 189-218. (2015) Zbl1349.11127MR3616300DOI10.3969/j.issn.0469-5097.2015.02.006
  30. Sun, Z.-W., 10.1016/j.ffa.2017.03.007, Finite Fields Appl. 46 (2017), 179-216. (2017) Zbl1406.11007MR3655755DOI10.1016/j.ffa.2017.03.007
  31. Tauraso, R., Supercongruences for a truncated hypergeometric series, Integers 12 (2012), Article ID A45, 12 pages. (2012) Zbl1301.11020MR3083418
  32. Tauraso, R., 10.1142/S1793042118500689, Int. J. Number Theory 14 (2018), 1093-1109. (2018) Zbl1421.11008MR3801086DOI10.1142/S1793042118500689
  33. Enckevort, C. van, Straten, D. van, 10.1090/amsip/038/23, Mirror Symmetry V AMS/IP Studies in Advanced Mathematics 38. AMS, Providence (2006), 539-559. (2006) Zbl1117.14043MR2282974DOI10.1090/amsip/038/23
  34. Wang, C., 10.1007/s11139-020-00283-w, Ramanujan J. 56 (2021), 1111-1121. (2021) Zbl07438419MR4341113DOI10.1007/s11139-020-00283-w
  35. Wang, C., Sun, Z.-W., 10.1016/j.jmaa.2021.125575, J. Math. Anal. Appl. 505 (2022), Article ID 125575, 20 pages. (2022) Zbl07412972MR4302676DOI10.1016/j.jmaa.2021.125575
  36. Zagier, D., 10.1090/crmp/047, Groups and Symmetries CRM Proceedings and Lecture Notes 47. AMS, Providence (2009), 349-366. (2009) Zbl1244.11042MR2500571DOI10.1090/crmp/047

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.