Displaying similar documents to “Congruences for certain families of Apéry-like sequences”

New infinite families of Ramanujan-type congruences modulo 9 for overpartition pairs

Ernest X. W. Xia (2015)

Colloquium Mathematicae

Similarity:

Let p p ¯ ( n ) denote the number of overpartition pairs of n. Bringmann and Lovejoy (2008) proved that for n ≥ 0, p p ¯ ( 3 n + 2 ) 0 ( m o d 3 ) . They also proved that there are infinitely many Ramanujan-type congruences modulo every power of odd primes for p p ¯ ( n ) . Recently, Chen and Lin (2012) established some Ramanujan-type identities and explicit congruences for p p ¯ ( n ) . Furthermore, they also constructed infinite families of congruences for p p ¯ ( n ) modulo 3 and 5, and two congruence relations modulo 9. In this paper, we prove several...

Some new infinite families of congruences modulo 3 for overpartitions into odd parts

Ernest X. W. Xia (2016)

Colloquium Mathematicae

Similarity:

Let p ̅ o ( n ) denote the number of overpartitions of n in which only odd parts are used. Some congruences modulo 3 and powers of 2 for the function p ̅ o ( n ) have been derived by Hirschhorn and Sellers, and Lovejoy and Osburn. In this paper, employing 2-dissections of certain quotients of theta functions due to Ramanujan, we prove some new infinite families of Ramanujan-type congruences for p ̅ o ( n ) modulo 3. For example, we prove that for n, α ≥ 0, p ̅ o ( 4 α ( 24 n + 17 ) ) p ̅ o ( 4 α ( 24 n + 23 ) ) 0 ( m o d 3 ) .

On Alternatives of Polynomial Congruences

Mariusz Skałba (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

What should be assumed about the integral polynomials f ( x ) , . . . , f k ( x ) in order that the solvability of the congruence f ( x ) f ( x ) f k ( x ) 0 ( m o d p ) for sufficiently large primes p implies the solvability of the equation f ( x ) f ( x ) f k ( x ) = 0 in integers x? We provide some explicit characterizations for the cases when f j ( x ) are binomials or have cyclic splitting fields.

Linear congruences and a conjecture of Bibak

Chinnakonda Gnanamoorthy Karthick Babu, Ranjan Bera, Balasubramanian Sury (2024)

Czechoslovak Mathematical Journal

Similarity:

We address three questions posed by K. Bibak (2020), and generalize some results of K. Bibak, D. N. Lehmer and K. G. Ramanathan on solutions of linear congruences i = 1 k a i x i b ( mod n ) . In particular, we obtain explicit expressions for the number of solutions, where x i ’s are squares modulo n . In addition, we obtain expressions for the number of solutions with order restrictions x 1 x k or with strict order restrictions x 1 > > x k in some special cases. In these results, the expressions for the number of solutions involve...

Congruences and homomorphisms on Ω -algebras

Elijah Eghosa Edeghagba, Branimir Šešelja, Andreja Tepavčević (2017)

Kybernetika

Similarity:

The topic of the paper are Ω -algebras, where Ω is a complete lattice. In this research we deal with congruences and homomorphisms. An Ω -algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an Ω -valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce Ω -valued congruences, corresponding quotient Ω -algebras and Ω -homomorphisms and we investigate connections among these notions....

Polynomial analogues of Ramanujan congruences for Han's hooklength formula

William J. Keith (2013)

Acta Arithmetica

Similarity:

This article considers the eta power ( 1 - q k ) b - 1 . It is proved that the coefficients of q n / n ! in this expression, as polynomials in b, exhibit equidistribution of the coefficients in the nonzero residue classes mod 5 when n = 5j+4. Other symmetries, as well as symmetries for other primes and prime powers, are proved, and some open questions are raised.

On square classes in generalized Fibonacci sequences

Zafer Şiar, Refik Keskin (2016)

Acta Arithmetica

Similarity:

Let P and Q be nonzero integers. The generalized Fibonacci and Lucas sequences are defined respectively as follows: U₀ = 0, U₁ = 1, V₀ = 2, V₁ = P and U n + 1 = P U + Q U n - 1 , V n + 1 = P V + Q V n - 1 for n ≥ 1. In this paper, when w ∈ 1,2,3,6, for all odd relatively prime values of P and Q such that P ≥ 1 and P² + 4Q > 0, we determine all n and m satisfying the equation Uₙ = wUₘx². In particular, when k|P and k > 1, we solve the equations Uₙ = kx² and Uₙ = 2kx². As a result, we determine all n such that Uₙ = 6x². ...

Some congruences involving binomial coefficients

Hui-Qin Cao, Zhi-Wei Sun (2015)

Colloquium Mathematicae

Similarity:

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that T p - 1 ( p / 3 ) 3 p - 1 ( m o d p ² ) , where the central trinomial coefficient Tₙ is the constant term in the expansion of ( 1 + x + x - 1 ) . We also prove three congruences modulo p³ conjectured by Sun, one of which is k = 0 p - 1 p - 1 k 2 k k ( ( - 1 ) k - ( - 3 ) - k ) ( p / 3 ) ( 3 p - 1 - 1 ) ( m o d p ³ ) . In addition, we get some new combinatorial identities.

On congruence permutable G -sets

Attila Nagy (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

An algebraic structure is said to be congruence permutable if its arbitrary congruences α and β satisfy the equation α β = β α , where denotes the usual composition of binary relations. To an arbitrary G -set X satisfying G X = , we assign a semigroup ( G , X , 0 ) on the base set G X { 0 } containing a zero element 0 G X , and examine the connection between the congruence permutability of the G -set X and the semigroup ( G , X , 0 ) .

Non-abelian p -adic L -functions and Eisenstein series of unitary groups – The CM method

Thanasis Bouganis (2014)

Annales de l’institut Fourier

Similarity:

In this work we prove various cases of the so-called “torsion congruences” between abelian p -adic L -functions that are related to automorphic representations of definite unitary groups. These congruences play a central role in the non-commutative Iwasawa theory as it became clear in the works of Kakde, Ritter and Weiss on the non-abelian Main Conjecture for the Tate motive. We tackle these congruences for a general definite unitary group of n variables and we obtain more explicit results...

On the lattice of congruences on inverse semirings

Anwesha Bhuniya, Anjan Kumar Bhuniya (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let S be a semiring whose additive reduct (S,+) is an inverse semigroup. The relations θ and k, induced by tr and ker (resp.), are congruences on the lattice C(S) of all congruences on S. For ρ ∈ C(S), we have introduced four congruences ρ m i n , ρ m a x , ρ m i n and ρ m a x on S and showed that ρ θ = [ ρ m i n , ρ m a x ] and ρ κ = [ ρ m i n , ρ m a x ] . Different properties of ρθ and ρκ have been considered here. A congruence ρ on S is a Clifford congruence if and only if ρ m a x is a distributive lattice congruence and ρ m a x is a skew-ring congruence on S. If η (σ) is the...

Arithmetic theory of harmonic numbers (II)

Zhi-Wei Sun, Li-Lu Zhao (2013)

Colloquium Mathematicae

Similarity:

For k = 1,2,... let H k denote the harmonic number j = 1 k 1 / j . In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime p > 3 we have k = 1 p - 1 ( H k ) / ( k 2 k ) 7 / 24 p B p - 3 ( m o d p ² ) , k = 1 p - 1 ( H k , 2 ) / ( k 2 k ) - 3 / 8 B p - 3 ( m o d p ) , and k = 1 p - 1 ( H ² k , 2 n ) / ( k 2 n ) ( 6 n + 1 2 n - 1 + n ) / ( 6 n + 1 ) p B p - 1 - 6 n ( m o d p ² ) for any positive integer n < (p-1)/6, where B₀,B₁,B₂,... are Bernoulli numbers, and H k , m : = j = 1 k 1 / ( j m ) .

Solutions of the Diophantine Equation 7 X 2 + Y 7 = Z 2 from Recurrence Sequences

Hayder R. Hashim (2020)

Communications in Mathematics

Similarity:

Consider the system x 2 - a y 2 = b , P ( x , y ) = z 2 , where P is a given integer polynomial. Historically, the integer solutions of such systems have been investigated by many authors using the congruence arguments and the quadratic reciprocity. In this paper, we use Kedlaya’s procedure and the techniques of using congruence arguments with the quadratic reciprocity to investigate the solutions of the Diophantine equation 7 X 2 + Y 7 = Z 2 if ( X , Y ) = ( L n , F n ) (or ( X , Y ) = ( F n , L n ) ) where { F n } and { L n } represent the sequences of Fibonacci numbers and Lucas numbers...

On a linear homogeneous congruence

A. Schinzel, M. Zakarczemny (2006)

Colloquium Mathematicae

Similarity:

The number of solutions of the congruence a x + + a k x k 0 ( m o d n ) in the box 0 x i b i is estimated from below in the best possible way, provided for all i,j either ( a i , n ) | ( a j , n ) or ( a j , n ) | ( a i , n ) or n | [ a i , a j ] .

The spt-crank for overpartitions

Frank G. Garvan, Chris Jennings-Shaffer (2014)

Acta Arithmetica

Similarity:

Bringmann, Lovejoy, and Osburn (2009, 2010) showed that the generating functions of the spt-overpartition functions s p t ¯ ( n ) , s p t ¯ 1 ( n ) , s p t ¯ 2 ( n ) , and M2spt(n) are quasimock theta functions, and satisfy a number of simple Ramanujan-like congruences. Andrews, Garvan, and Liang (2012) defined an spt-crank in terms of weighted vector partitions which combinatorially explain simple congruences modulo 5 and 7 for spt(n). Chen, Ji, and Zang (2013) were able to define this spt-crank in terms of ordinary partitions....

A formula for the number of solutions of a restricted linear congruence

K. Vishnu Namboothiri (2021)

Mathematica Bohemica

Similarity:

Consider the linear congruence equation x 1 + ... + x k b ( mod n s ) for b , n , s . Let ( a , b ) s denote the generalized gcd of a and b which is the largest l s with l dividing a and b simultaneously. Let d 1 , ... , d τ ( n ) be all positive divisors of n . For each d j n , define 𝒞 j , s ( n ) = { 1 x n s : ( x , n s ) s = d j s } . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on x i . We generalize their result with generalized gcd restrictions on x i and prove that for the above linear congruence, the...