Endomorphism kernel property for finite groups

Heghine Ghumashyan; Jaroslav Guričan

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 3, page 347-358
  • ISSN: 0862-7959

Abstract

top
A group G has the endomorphism kernel property (EKP) if every congruence relation θ on G is the kernel of an endomorphism on G . In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.

How to cite

top

Ghumashyan, Heghine, and Guričan, Jaroslav. "Endomorphism kernel property for finite groups." Mathematica Bohemica 147.3 (2022): 347-358. <http://eudml.org/doc/298469>.

@article{Ghumashyan2022,
abstract = {A group $G$ has the endomorphism kernel property (EKP) if every congruence relation $\theta $ on $G$ is the kernel of an endomorphism on $G$. In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.},
author = {Ghumashyan, Heghine, Guričan, Jaroslav},
journal = {Mathematica Bohemica},
keywords = {endomorphism kernel property; nilpotent group; $p$-group},
language = {eng},
number = {3},
pages = {347-358},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Endomorphism kernel property for finite groups},
url = {http://eudml.org/doc/298469},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Ghumashyan, Heghine
AU - Guričan, Jaroslav
TI - Endomorphism kernel property for finite groups
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 347
EP - 358
AB - A group $G$ has the endomorphism kernel property (EKP) if every congruence relation $\theta $ on $G$ is the kernel of an endomorphism on $G$. In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.
LA - eng
KW - endomorphism kernel property; nilpotent group; $p$-group
UR - http://eudml.org/doc/298469
ER -

References

top
  1. Blyth, T. S., Fang, J., Silva, H. J., 10.1081/agb-120037216, Commun. Algebra 32 (2004), 2225-2242. (2004) Zbl1060.06018MR2100466DOI10.1081/agb-120037216
  2. Blyth, T. S., Fang, J., Wang, L.-B., The strong endomorphism kernel property in distributive double p -algebras, Sci. Math. Jpn. 76 (2013), 227-234. (2013) Zbl1320.06009MR3330070
  3. Blyth, T. S., Silva, H. J., 10.1080/00927870801937240, Commun. Algebra 36 (2008), 1682-1694. (2008) Zbl1148.06005MR2424259DOI10.1080/00927870801937240
  4. Fang, J., 10.1007/s11225-017-9722-3, Stud. Log. 105 (2017), 995-1013. (2017) Zbl1421.06003MR3704306DOI10.1007/s11225-017-9722-3
  5. Fang, G., Fang, J., The strong endomorphism kernel property in distributive p -algebras, Southeast Asian Bull. Math. 37 (2013), 491-497. (2013) Zbl1299.06017MR3134913
  6. Fang, J., Sun, Z.-J., 10.1007/s00012-013-0254-z, Algebra Univers. 70 (2013), 393-401. (2013) Zbl1305.06004MR3127981DOI10.1007/s00012-013-0254-z
  7. Fang, J., Sun, Z.-J., 10.1007/s10114-020-9444-8, Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082. (2020) Zbl07343749MR4145699DOI10.1007/s10114-020-9444-8
  8. Gaitán, H., Cortés, Y. J., The endomorphism kernel property in finite Stone algebras, JP J. Algebra Number Theory Appl. 14 (2009), 51-64. (2009) Zbl1191.06007MR2548439
  9. Group, GAP, GAP - Groups, Algorithms, and Programming, Version 4.10.2, Available at https://www.gap-system.org/. 
  10. Guričan, J., The endomorphism kernel property for modular p -algebras and Stone lattices of order n , JP J. Algebra Number Theory Appl. 25 (2012), 69-90. (2012) Zbl1258.06002MR2976467
  11. Guričan, J., A note on the endomorphism kernel property, JP J. Algebra Number Theory Appl. 33 (2014), 133-139. (2014) Zbl1302.08004
  12. Guričan, J., 10.17654/JPANTAJun2015_241_258, JP J. Algebra Number Theory Appl. 36 (2015), 241-258. (2015) Zbl1333.06025DOI10.17654/JPANTAJun2015_241_258
  13. Guričan, J., Ploščica, M., 10.1007/s00012-016-0370-7, Algebra Univers. 75 (2016), 243-255. (2016) Zbl1348.06008MR3515400DOI10.1007/s00012-016-0370-7
  14. Halušková, E., 10.21136/mb.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl06890412MR3831484DOI10.21136/mb.2017.0056-16
  15. Halušková, E., 10.21136/MB.2019.0128-18, Math. Bohem. 145 (2020), 401-414. (2020) Zbl07286021MR4221842DOI10.21136/MB.2019.0128-18
  16. Kaarli, K., Pixley, A. F., 10.1201/9781482285758, Chapman & Hall/CRC, Boca Raton (2001). (2001) Zbl0964.08001MR1888967DOI10.1201/9781482285758
  17. Kurzweil, H., Stellmacher, B., 10.1007/b97433, Universitext. Springer, New York (2004). (2004) Zbl1047.20011MR2014408DOI10.1007/b97433

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.