Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras

Jaroslav Guričan; Heghine Ghumashyan

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 1, page 13-25
  • ISSN: 0862-7959

Abstract

top
We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.

How to cite

top

Guričan, Jaroslav, and Ghumashyan, Heghine. "Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras." Mathematica Bohemica 149.1 (2024): 13-25. <http://eudml.org/doc/299219>.

@article{Guričan2024,
abstract = {We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.},
author = {Guričan, Jaroslav, Ghumashyan, Heghine},
journal = {Mathematica Bohemica},
keywords = {(strong) endomorphism kernel property; congruence relation; Brouwerian semilattice; Brouwerian algebra; dual generalized Boolean algebra; direct sum; factorable congruences},
language = {eng},
number = {1},
pages = {13-25},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras},
url = {http://eudml.org/doc/299219},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Guričan, Jaroslav
AU - Ghumashyan, Heghine
TI - Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 1
SP - 13
EP - 25
AB - We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.
LA - eng
KW - (strong) endomorphism kernel property; congruence relation; Brouwerian semilattice; Brouwerian algebra; dual generalized Boolean algebra; direct sum; factorable congruences
UR - http://eudml.org/doc/299219
ER -

References

top
  1. Blyth, T. S., Fang, J., Silva, H. J., 10.1081/agb-120037216, Commun. Algebra 32 (2004), 2225-2242. (2004) Zbl1060.06018MR2100466DOI10.1081/agb-120037216
  2. Blyth, T. S., Fang, J., Wang, L.-B., 10.32219/isms.76.2_227, Sci. Math. Jpn. 76 (2013), 227-234. (2013) Zbl1320.06009MR3330070DOI10.32219/isms.76.2_227
  3. Blyth, T. S., Silva, H. J., 10.1080/00927870801937240, Commun. Algebra 36 (2008), 1682-1694. (2008) Zbl1148.06005MR2424259DOI10.1080/00927870801937240
  4. Davey, B. A., 10.1090/S0002-9947-1976-0412063-9, Trans. Am. Math. Soc. 221 (1976), 119-146. (1976) Zbl0319.06007MR0412063DOI10.1090/S0002-9947-1976-0412063-9
  5. Fang, G., Fang, J., The strong endomorphism kernel property in distributive p -algebras, Southeast Asian Bull. Math. 37 (2013), 491-497. (2013) Zbl1299.06017MR3134913
  6. Fang, J., 10.1007/s11225-017-9722-3, Stud. Log. 105 (2017), 995-1013. (2017) Zbl1421.06003MR3704306DOI10.1007/s11225-017-9722-3
  7. Fang, J., Sun, Z.-J., 10.1007/s00012-013-0254-z, Algebra Univers. 70 (2013), 393-401. (2013) Zbl1305.06004MR3127981DOI10.1007/s00012-013-0254-z
  8. Fang, J., Sun, Z. J., 10.1007/s10114-020-9444-8, Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082. (2020) Zbl1484.20093MR4145699DOI10.1007/s10114-020-9444-8
  9. Ghumashyan, H., Guričan, J., 10.21136/MB.2021.0171-20, Math. Bohem. 147 347-358 (2022). (2022) Zbl7584129MR4482310DOI10.21136/MB.2021.0171-20
  10. Grätzer, G., 10.1007/978-3-0348-0018-1, Birkhäuser, Basel (2011). (2011) Zbl1233.06001MR2768581DOI10.1007/978-3-0348-0018-1
  11. Guričan, J., A note on the endomorphism kernel property, JP J. Algebra Number Theory Appl. 33 (2014), 133-139. (2014) Zbl1302.08004
  12. Guričan, J., 10.17654/JPANTAJun2015_241_258, JP J. Algebra Number Theory Appl. 36 (2015), 241-258. (2015) Zbl1333.06025DOI10.17654/JPANTAJun2015_241_258
  13. Guričan, J., Ploščica, M., 10.1007/s00012-016-0370-7, Algebra Univers. 75 (2016), 243-255. (2016) Zbl1348.06008MR3515400DOI10.1007/s00012-016-0370-7
  14. Halušková, E., 10.21136/mb.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl1463.08003MR3831484DOI10.21136/mb.2017.0056-16
  15. Halušková, E., 10.21136/MB.2019.0128-18, Math. Bohem. 145 (2020), 401-414. (2020) Zbl07286021MR4221842DOI10.21136/MB.2019.0128-18
  16. Hashimoto, J., Ideal theory for lattices, Math. Jap. 2 (1952), 149-186. (1952) Zbl0048.25903MR0057224
  17. Hecht, T., Katriňák, T., 10.1305/ndjfl/1093894723, Notre Dame J. Formal Logic 13 (1972), 248-254. (1972) Zbl0212.01601MR0295978DOI10.1305/ndjfl/1093894723
  18. Katriňák, T., 10.1515/crll.1970.241.160, J. Reine Angew. Math. 241 (1970), 160-179 German. (1970) Zbl0192.33503MR0260629DOI10.1515/crll.1970.241.160
  19. Katriňák, T., 10.1305/ndjfl/1093894072, Notre Dame J. Formal Logic 11 (1970), 425-430. (1970) Zbl0185.03803MR0290946DOI10.1305/ndjfl/1093894072
  20. Katriňák, T., Relativ Stonesche Halbverbände sind Verbände, Bull. Soc. R. Sci. Liège 40 (1971), 91-93 German. (1971) Zbl0221.06002MR0288059
  21. Katriňák, T., 10.21136/CMJ.1972.101112, Czech. Math. J. 22 (1972), 427-434 German. (1972) Zbl0222.06006MR0309814DOI10.21136/CMJ.1972.101112
  22. Köhler, P., 10.1090/S0002-9947-1981-0628448-3, Trans. Am. Math. Soc. 268 (1981), 103-126. (1981) Zbl0473.06003MR0628448DOI10.1090/S0002-9947-1981-0628448-3
  23. Nemitz, W. C., 10.1090/S0002-9947-1965-0176944-9, Trans. Am. Math. Soc. 117 (1965), 128-142. (1965) Zbl0128.24804MR0176944DOI10.1090/S0002-9947-1965-0176944-9
  24. Ploščica, M., 10.1007/BF00338748, Order 13 (1996), 295-311. (1996) Zbl0907.06013MR1420402DOI10.1007/BF00338748

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.