Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras
Jaroslav Guričan; Heghine Ghumashyan
Mathematica Bohemica (2024)
- Volume: 149, Issue: 1, page 13-25
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGuričan, Jaroslav, and Ghumashyan, Heghine. "Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras." Mathematica Bohemica 149.1 (2024): 13-25. <http://eudml.org/doc/299219>.
@article{Guričan2024,
abstract = {We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.},
author = {Guričan, Jaroslav, Ghumashyan, Heghine},
journal = {Mathematica Bohemica},
keywords = {(strong) endomorphism kernel property; congruence relation; Brouwerian semilattice; Brouwerian algebra; dual generalized Boolean algebra; direct sum; factorable congruences},
language = {eng},
number = {1},
pages = {13-25},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras},
url = {http://eudml.org/doc/299219},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Guričan, Jaroslav
AU - Ghumashyan, Heghine
TI - Strong endomorphism kernel property for finite Brouwerian semilattices and relative Stone algebras
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 1
SP - 13
EP - 25
AB - We show that all finite Brouwerian semilattices have strong endomorphism kernel property (SEKP), give a new proof that all finite relative Stone algebras have SEKP and also fully characterize dual generalized Boolean algebras which possess SEKP.
LA - eng
KW - (strong) endomorphism kernel property; congruence relation; Brouwerian semilattice; Brouwerian algebra; dual generalized Boolean algebra; direct sum; factorable congruences
UR - http://eudml.org/doc/299219
ER -
References
top- Blyth, T. S., Fang, J., Silva, H. J., 10.1081/agb-120037216, Commun. Algebra 32 (2004), 2225-2242. (2004) Zbl1060.06018MR2100466DOI10.1081/agb-120037216
- Blyth, T. S., Fang, J., Wang, L.-B., 10.32219/isms.76.2_227, Sci. Math. Jpn. 76 (2013), 227-234. (2013) Zbl1320.06009MR3330070DOI10.32219/isms.76.2_227
- Blyth, T. S., Silva, H. J., 10.1080/00927870801937240, Commun. Algebra 36 (2008), 1682-1694. (2008) Zbl1148.06005MR2424259DOI10.1080/00927870801937240
- Davey, B. A., 10.1090/S0002-9947-1976-0412063-9, Trans. Am. Math. Soc. 221 (1976), 119-146. (1976) Zbl0319.06007MR0412063DOI10.1090/S0002-9947-1976-0412063-9
- Fang, G., Fang, J., The strong endomorphism kernel property in distributive -algebras, Southeast Asian Bull. Math. 37 (2013), 491-497. (2013) Zbl1299.06017MR3134913
- Fang, J., 10.1007/s11225-017-9722-3, Stud. Log. 105 (2017), 995-1013. (2017) Zbl1421.06003MR3704306DOI10.1007/s11225-017-9722-3
- Fang, J., Sun, Z.-J., 10.1007/s00012-013-0254-z, Algebra Univers. 70 (2013), 393-401. (2013) Zbl1305.06004MR3127981DOI10.1007/s00012-013-0254-z
- Fang, J., Sun, Z. J., 10.1007/s10114-020-9444-8, Acta Math. Sin., Engl. Ser. 36 (2020), 1076-1082. (2020) Zbl1484.20093MR4145699DOI10.1007/s10114-020-9444-8
- Ghumashyan, H., Guričan, J., 10.21136/MB.2021.0171-20, Math. Bohem. 147 347-358 (2022). (2022) Zbl7584129MR4482310DOI10.21136/MB.2021.0171-20
- Grätzer, G., 10.1007/978-3-0348-0018-1, Birkhäuser, Basel (2011). (2011) Zbl1233.06001MR2768581DOI10.1007/978-3-0348-0018-1
- Guričan, J., A note on the endomorphism kernel property, JP J. Algebra Number Theory Appl. 33 (2014), 133-139. (2014) Zbl1302.08004
- Guričan, J., 10.17654/JPANTAJun2015_241_258, JP J. Algebra Number Theory Appl. 36 (2015), 241-258. (2015) Zbl1333.06025DOI10.17654/JPANTAJun2015_241_258
- Guričan, J., Ploščica, M., 10.1007/s00012-016-0370-7, Algebra Univers. 75 (2016), 243-255. (2016) Zbl1348.06008MR3515400DOI10.1007/s00012-016-0370-7
- Halušková, E., 10.21136/mb.2017.0056-16, Math. Bohem. 143 (2018), 161-171. (2018) Zbl1463.08003MR3831484DOI10.21136/mb.2017.0056-16
- Halušková, E., 10.21136/MB.2019.0128-18, Math. Bohem. 145 (2020), 401-414. (2020) Zbl07286021MR4221842DOI10.21136/MB.2019.0128-18
- Hashimoto, J., Ideal theory for lattices, Math. Jap. 2 (1952), 149-186. (1952) Zbl0048.25903MR0057224
- Hecht, T., Katriňák, T., 10.1305/ndjfl/1093894723, Notre Dame J. Formal Logic 13 (1972), 248-254. (1972) Zbl0212.01601MR0295978DOI10.1305/ndjfl/1093894723
- Katriňák, T., 10.1515/crll.1970.241.160, J. Reine Angew. Math. 241 (1970), 160-179 German. (1970) Zbl0192.33503MR0260629DOI10.1515/crll.1970.241.160
- Katriňák, T., 10.1305/ndjfl/1093894072, Notre Dame J. Formal Logic 11 (1970), 425-430. (1970) Zbl0185.03803MR0290946DOI10.1305/ndjfl/1093894072
- Katriňák, T., Relativ Stonesche Halbverbände sind Verbände, Bull. Soc. R. Sci. Liège 40 (1971), 91-93 German. (1971) Zbl0221.06002MR0288059
- Katriňák, T., 10.21136/CMJ.1972.101112, Czech. Math. J. 22 (1972), 427-434 German. (1972) Zbl0222.06006MR0309814DOI10.21136/CMJ.1972.101112
- Köhler, P., 10.1090/S0002-9947-1981-0628448-3, Trans. Am. Math. Soc. 268 (1981), 103-126. (1981) Zbl0473.06003MR0628448DOI10.1090/S0002-9947-1981-0628448-3
- Nemitz, W. C., 10.1090/S0002-9947-1965-0176944-9, Trans. Am. Math. Soc. 117 (1965), 128-142. (1965) Zbl0128.24804MR0176944DOI10.1090/S0002-9947-1965-0176944-9
- Ploščica, M., 10.1007/BF00338748, Order 13 (1996), 295-311. (1996) Zbl0907.06013MR1420402DOI10.1007/BF00338748
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.