Lucas sequences and repdigits

Hayder Raheem Hashim; Szabolcs Tengely

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 3, page 301-318
  • ISSN: 0862-7959

Abstract

top
Let ( G n ) n 1 be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are { U n } and { V n } , respectively. We show that the Diophantine equation G n = B · ( g l m - 1 ) / ( g l - 1 ) has only finitely many solutions in n , m + , where g 2 , l is even and 1 B g l - 1 . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of G n = U n , and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers { F n } and Pell numbers { P n } . Furthermore, with the first application we determine all the solutions ( n , m , g , B , l ) of the equation F n = B · ( g l m - 1 ) / ( g l - 1 ) , where 2 g 9 and l = 1 .

How to cite

top

Hashim, Hayder Raheem, and Tengely, Szabolcs. "Lucas sequences and repdigits." Mathematica Bohemica 147.3 (2022): 301-318. <http://eudml.org/doc/298498>.

@article{Hashim2022,
abstract = {Let $(G_\{n\})_\{n \ge 1\}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\lbrace U_n\rbrace $ and $\lbrace V_n\rbrace $, respectively. We show that the Diophantine equation $G_n=B \cdot (g^\{lm\}-1)/(g^\{l\}-1)$ has only finitely many solutions in $n, m \in \mathbb \{Z\}^+$, where $g \ge 2$, $l$ is even and $1 \le B \le g^\{l\}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\lbrace F_n\rbrace $ and Pell numbers $\lbrace P_n\rbrace $. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^\{lm\}-1)/(g^l-1)$, where $2 \le g \le 9$ and $l=1$.},
author = {Hashim, Hayder Raheem, Tengely, Szabolcs},
journal = {Mathematica Bohemica},
keywords = {Diophantine equation; Lucas sequence; repdigit; elliptic curve},
language = {eng},
number = {3},
pages = {301-318},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lucas sequences and repdigits},
url = {http://eudml.org/doc/298498},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Hashim, Hayder Raheem
AU - Tengely, Szabolcs
TI - Lucas sequences and repdigits
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 301
EP - 318
AB - Let $(G_{n})_{n \ge 1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\lbrace U_n\rbrace $ and $\lbrace V_n\rbrace $, respectively. We show that the Diophantine equation $G_n=B \cdot (g^{lm}-1)/(g^{l}-1)$ has only finitely many solutions in $n, m \in \mathbb {Z}^+$, where $g \ge 2$, $l$ is even and $1 \le B \le g^{l}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\lbrace F_n\rbrace $ and Pell numbers $\lbrace P_n\rbrace $. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^{lm}-1)/(g^l-1)$, where $2 \le g \le 9$ and $l=1$.
LA - eng
KW - Diophantine equation; Lucas sequence; repdigit; elliptic curve
UR - http://eudml.org/doc/298498
ER -

References

top
  1. Adegbindin, C., Luca, F., Togbé, A., 10.1007/s10986-019-09451-y, Lith. Math. J. 59 (2019), 295-304. (2019) Zbl1427.11013MR4009815DOI10.1007/s10986-019-09451-y
  2. Alekseyev, M. A., Tengely, S., On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17 (2014), Article ID 14.6.6, 15 pages. (2014) Zbl1358.11141MR3209790
  3. Baker, A., 10.1112/jlms/s1-43.1.1, J. Lond. Math. Soc. 43 (1968), 1-9. (1968) Zbl0155.08701MR0231783DOI10.1112/jlms/s1-43.1.1
  4. Baker, A., 10.1017/S0305004100044418, Proc. Camb. Philos. Soc. 65 (1969), 439-444. (1969) Zbl0174.33803MR0234912DOI10.1017/S0305004100044418
  5. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  6. Bravo, J. J., Luca, F., 10.1007/s00605-014-0622-6, Monatsh. Math. 176 (2015), 31-51. (2015) Zbl1390.11034MR3296202DOI10.1007/s00605-014-0622-6
  7. Brindza, B., 10.1007/BF01974110, Acta Math. Hung. 44 (1984), 133-139. (1984) Zbl0552.10009MR0759041DOI10.1007/BF01974110
  8. Bugeaud, Y., 10.1023/A:1000130114331, Compos. Math. 107 (1997), 187-219. (1997) Zbl0886.11016MR1458749DOI10.1023/A:1000130114331
  9. Bugeaud, Y., Mignotte, M., 10.1112/S0025579300007865, Mathematika 46 (1999), 411-417. (1999) Zbl1033.11012MR1832631DOI10.1112/S0025579300007865
  10. Alvarado, S. Díaz, Luca, F., Fibonacci numbers which are sums of two repdigits, Proceedings of the 14th International Conference on Fibonacci Numbers and Their Applications Sociedad Matemática Mexicana, Mexico (2011), 97-108. (2011) Zbl1287.11021MR3243271
  11. Dujella, A., Pethő, A., 10.1093/qmathj/49.3.291, Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qmathj/49.3.291
  12. Faye, B., Luca, F., Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55-60. (2015) Zbl1349.11023MR3438812
  13. Gebel, J., Pethő, A., Zimmer, H. G., 10.4064/aa-68-2-171-192, Acta Arith. 68 (1994), 171-192. (1994) Zbl0816.11019MR1305199DOI10.4064/aa-68-2-171-192
  14. Hajdu, L., Herendi, T., 10.1006/jsco.1997.0181, J. Symb. Comput. 25 (1998), 361-366. (1998) Zbl0923.11048MR1615334DOI10.1006/jsco.1997.0181
  15. Jones, L., Marques, D., Togbé, A., On terms of Lucas sequences with only one distinct digit, Indian J. Math. 57 (2015), 151-164. (2015) Zbl1366.11013MR3362712
  16. Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254. (2000) Zbl0958.11007MR1759818
  17. Marques, D., Togbé, A., 10.4064/cm124-2-1, Colloq. Math. 124 (2011), 145-155. (2011) Zbl1246.11036MR2842943DOI10.4064/cm124-2-1
  18. Marques, D., Togbé, A., On repdigits as product of consecutive Fibonacci numbers, Rend. Ist. Mat. Univ. Trieste 44 (2012), 393-397. (2012) Zbl1290.11008MR3019569
  19. Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
  20. Obláth, R., Une propriété des puissances parfaites, Mathesis 65 (1956), 356-364 French. (1956) Zbl0072.26503MR0082991
  21. Ribenboim, P., 10.1007/b98892, Springer, New York (2000). (2000) Zbl0947.11001MR1761897DOI10.1007/b98892
  22. Shorey, T. N., Tijdeman, R., 10.1017/CBO9780511566042, Cambridge Tracts in Mathematics 87. Cambridge University Press, Cambridge (1986). (1986) Zbl0606.10011MR0891406DOI10.1017/CBO9780511566042
  23. Şiar, Z., Erduvan, F., Keskin, R., Repdigits as product of two Pell or Pell-Lucas numbers, Acta Math. Univ. Comen., New Ser. 88 (2019), 247-256. (2019) Zbl07111088MR3984643
  24. Sprindžuk, V. G., 10.1007/BFb0073786, Lecture Notes in Mathematics 1559. Springer, Berlin (1993). (1993) Zbl0787.11008MR1288309DOI10.1007/BFb0073786
  25. al., W. A. Stein et, SageMath (Version 9.0), Available at https://www.sagemath.org/. 
  26. Stroeker, R. J., Tzanakis, N., 10.4064/aa-67-2-177-196, Acta Arith. 67 (1994), 177-196. (1994) Zbl0805.11026MR1291875DOI10.4064/aa-67-2-177-196
  27. Tzanakis, N., 10.4064/aa-75-2-165-190, Acta Arith. 75 (1996), 165-190. (1996) Zbl0858.11016MR1379397DOI10.4064/aa-75-2-165-190

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.