Lucas sequences and repdigits
Hayder Raheem Hashim; Szabolcs Tengely
Mathematica Bohemica (2022)
- Volume: 147, Issue: 3, page 301-318
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topHashim, Hayder Raheem, and Tengely, Szabolcs. "Lucas sequences and repdigits." Mathematica Bohemica 147.3 (2022): 301-318. <http://eudml.org/doc/298498>.
@article{Hashim2022,
abstract = {Let $(G_\{n\})_\{n \ge 1\}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\lbrace U_n\rbrace $ and $\lbrace V_n\rbrace $, respectively. We show that the Diophantine equation $G_n=B \cdot (g^\{lm\}-1)/(g^\{l\}-1)$ has only finitely many solutions in $n, m \in \mathbb \{Z\}^+$, where $g \ge 2$, $l$ is even and $1 \le B \le g^\{l\}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\lbrace F_n\rbrace $ and Pell numbers $\lbrace P_n\rbrace $. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^\{lm\}-1)/(g^l-1)$, where $2 \le g \le 9$ and $l=1$.},
author = {Hashim, Hayder Raheem, Tengely, Szabolcs},
journal = {Mathematica Bohemica},
keywords = {Diophantine equation; Lucas sequence; repdigit; elliptic curve},
language = {eng},
number = {3},
pages = {301-318},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Lucas sequences and repdigits},
url = {http://eudml.org/doc/298498},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Hashim, Hayder Raheem
AU - Tengely, Szabolcs
TI - Lucas sequences and repdigits
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 301
EP - 318
AB - Let $(G_{n})_{n \ge 1}$ be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are $\lbrace U_n\rbrace $ and $\lbrace V_n\rbrace $, respectively. We show that the Diophantine equation $G_n=B \cdot (g^{lm}-1)/(g^{l}-1)$ has only finitely many solutions in $n, m \in \mathbb {Z}^+$, where $g \ge 2$, $l$ is even and $1 \le B \le g^{l}-1$. Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on such curves, we conclude the finiteness result. In fact, we show this result in detail in the case of $G_n=U_n$, and the remaining case can be handled in a similar way. We apply our result to the sequences of Fibonacci numbers $\lbrace F_n\rbrace $ and Pell numbers $\lbrace P_n\rbrace $. Furthermore, with the first application we determine all the solutions $(n,m,g,B,l)$ of the equation $F_n=B \cdot (g^{lm}-1)/(g^l-1)$, where $2 \le g \le 9$ and $l=1$.
LA - eng
KW - Diophantine equation; Lucas sequence; repdigit; elliptic curve
UR - http://eudml.org/doc/298498
ER -
References
top- Adegbindin, C., Luca, F., Togbé, A., 10.1007/s10986-019-09451-y, Lith. Math. J. 59 (2019), 295-304. (2019) Zbl1427.11013MR4009815DOI10.1007/s10986-019-09451-y
- Alekseyev, M. A., Tengely, S., On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17 (2014), Article ID 14.6.6, 15 pages. (2014) Zbl1358.11141MR3209790
- Baker, A., 10.1112/jlms/s1-43.1.1, J. Lond. Math. Soc. 43 (1968), 1-9. (1968) Zbl0155.08701MR0231783DOI10.1112/jlms/s1-43.1.1
- Baker, A., 10.1017/S0305004100044418, Proc. Camb. Philos. Soc. 65 (1969), 439-444. (1969) Zbl0174.33803MR0234912DOI10.1017/S0305004100044418
- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Bravo, J. J., Luca, F., 10.1007/s00605-014-0622-6, Monatsh. Math. 176 (2015), 31-51. (2015) Zbl1390.11034MR3296202DOI10.1007/s00605-014-0622-6
- Brindza, B., 10.1007/BF01974110, Acta Math. Hung. 44 (1984), 133-139. (1984) Zbl0552.10009MR0759041DOI10.1007/BF01974110
- Bugeaud, Y., 10.1023/A:1000130114331, Compos. Math. 107 (1997), 187-219. (1997) Zbl0886.11016MR1458749DOI10.1023/A:1000130114331
- Bugeaud, Y., Mignotte, M., 10.1112/S0025579300007865, Mathematika 46 (1999), 411-417. (1999) Zbl1033.11012MR1832631DOI10.1112/S0025579300007865
- Alvarado, S. Díaz, Luca, F., Fibonacci numbers which are sums of two repdigits, Proceedings of the 14th International Conference on Fibonacci Numbers and Their Applications Sociedad Matemática Mexicana, Mexico (2011), 97-108. (2011) Zbl1287.11021MR3243271
- Dujella, A., Pethő, A., 10.1093/qmathj/49.3.291, Q. J. Math., Oxf. II. Ser. 49 (1998), 291-306. (1998) Zbl0911.11018MR1645552DOI10.1093/qmathj/49.3.291
- Faye, B., Luca, F., Pell and Pell-Lucas numbers with only one distinct digit, Ann. Math. Inform. 45 (2015), 55-60. (2015) Zbl1349.11023MR3438812
- Gebel, J., Pethő, A., Zimmer, H. G., 10.4064/aa-68-2-171-192, Acta Arith. 68 (1994), 171-192. (1994) Zbl0816.11019MR1305199DOI10.4064/aa-68-2-171-192
- Hajdu, L., Herendi, T., 10.1006/jsco.1997.0181, J. Symb. Comput. 25 (1998), 361-366. (1998) Zbl0923.11048MR1615334DOI10.1006/jsco.1997.0181
- Jones, L., Marques, D., Togbé, A., On terms of Lucas sequences with only one distinct digit, Indian J. Math. 57 (2015), 151-164. (2015) Zbl1366.11013MR3362712
- Luca, F., Fibonacci and Lucas numbers with only one distinct digit, Port. Math. 57 (2000), 243-254. (2000) Zbl0958.11007MR1759818
- Marques, D., Togbé, A., 10.4064/cm124-2-1, Colloq. Math. 124 (2011), 145-155. (2011) Zbl1246.11036MR2842943DOI10.4064/cm124-2-1
- Marques, D., Togbé, A., On repdigits as product of consecutive Fibonacci numbers, Rend. Ist. Mat. Univ. Trieste 44 (2012), 393-397. (2012) Zbl1290.11008MR3019569
- Matveev, E. M., 10.1070/IM2000v064n06ABEH000314, Izv. Math. 64 (2000), 1217-1269. (2000) Zbl1013.11043MR1817252DOI10.1070/IM2000v064n06ABEH000314
- Obláth, R., Une propriété des puissances parfaites, Mathesis 65 (1956), 356-364 French. (1956) Zbl0072.26503MR0082991
- Ribenboim, P., 10.1007/b98892, Springer, New York (2000). (2000) Zbl0947.11001MR1761897DOI10.1007/b98892
- Shorey, T. N., Tijdeman, R., 10.1017/CBO9780511566042, Cambridge Tracts in Mathematics 87. Cambridge University Press, Cambridge (1986). (1986) Zbl0606.10011MR0891406DOI10.1017/CBO9780511566042
- Şiar, Z., Erduvan, F., Keskin, R., Repdigits as product of two Pell or Pell-Lucas numbers, Acta Math. Univ. Comen., New Ser. 88 (2019), 247-256. (2019) Zbl07111088MR3984643
- Sprindžuk, V. G., 10.1007/BFb0073786, Lecture Notes in Mathematics 1559. Springer, Berlin (1993). (1993) Zbl0787.11008MR1288309DOI10.1007/BFb0073786
- al., W. A. Stein et, SageMath (Version 9.0), Available at https://www.sagemath.org/.
- Stroeker, R. J., Tzanakis, N., 10.4064/aa-67-2-177-196, Acta Arith. 67 (1994), 177-196. (1994) Zbl0805.11026MR1291875DOI10.4064/aa-67-2-177-196
- Tzanakis, N., 10.4064/aa-75-2-165-190, Acta Arith. 75 (1996), 165-190. (1996) Zbl0858.11016MR1379397DOI10.4064/aa-75-2-165-190
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.