Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations
Acta Arithmetica (1996)
- Volume: 75, Issue: 2, page 165-190
- ISSN: 0065-1036
Access Full Article
topHow to cite
topN. Tzanakis. "Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations." Acta Arithmetica 75.2 (1996): 165-190. <http://eudml.org/doc/206868>.
@article{N1996,
author = {N. Tzanakis},
journal = {Acta Arithmetica},
keywords = {elliptic curve; elliptic diophantine equations; effective computation; linear forms in elliptic logarithms; quartic elliptic equations},
language = {eng},
number = {2},
pages = {165-190},
title = {Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations},
url = {http://eudml.org/doc/206868},
volume = {75},
year = {1996},
}
TY - JOUR
AU - N. Tzanakis
TI - Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 2
SP - 165
EP - 190
LA - eng
KW - elliptic curve; elliptic diophantine equations; effective computation; linear forms in elliptic logarithms; quartic elliptic equations
UR - http://eudml.org/doc/206868
ER -
References
top- [B] R. T. Bumby, The diophantine equation 3x⁴-2y²=1, Math. Scand. 21 (1967), 144-148. Zbl0169.37402
- [Cn] I. Connell, Addendum to a paper of Harada and Lang, J. Algebra 145 (1992), 463-467. Zbl0759.11021
- [Cx] D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 275-330. Zbl0583.33002
- [Da] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. 62 Soc. Math. France (Suppl. to Bull. Soc. Math. France 123 (3) (1995)), to appear.
- [Di] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1971.
- [GPZ] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192. Zbl0816.11019
- [G] R. K. Guy, Reviews in Number Theory 1973-83, Vol. 2A, Amer. Math. Soc., Providence, R.I., 1984. Zbl0598.10001
- [HK] N. Hirata-Kohno, Formes linéaires de logarithmes de points algébriques sur les groupes algébriques, Invent. Math. 104 (1991), 401-433. Zbl0704.11016
- [LLL] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. Zbl0488.12001
- [LV] W. J. LeVeque, Reviews in Number Theory 1940-72, Vol. 2, Amer. Math. Soc., Providence, R.I., 1974.
- [L1] W. Ljunggren, Einige Sätze über unbestimmte Gleichungen von der Form Ax⁴ +Bx² +C = Dy², Vid.-Akad. Skrifter I (9) (1942), 53 pp.
- [L2] W. Ljunggren, Zur Theorie der Gleichung X² +1 = DY⁴, Avh. Norske Vid. Akad. Oslo I (5) (1942), 27 pp.
- [L3] W. Ljunggren, Proof of a theorem of de Jonquières, Norsk Mat. Tidsskrift 26 (1944), 3-8 (in Norwegian).
- [S1] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. Zbl0656.14016
- [S2] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. Zbl0729.14026
- [StT] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation X² +1 = 2Y⁴, J. Number Theory 37 (1991), 123-132. Zbl0716.11016
- [Str] R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Math. 97 (1995), 295-307. Zbl0837.11012
- [ST] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196. Zbl0805.11026
- [SW] R. J. Stroeker and B. M. M. de Weger, On a quartic Diophantine equation, Proc. Edinburgh Math. Soc., to appear.
- [T1] J. Top, Fermat's 'primitive solutions' and some arithmetic of elliptic curves, Indag. Math. 4 (1993), 211-222. Zbl0787.11022
- [T2] J. Top, Examples of elliptic quartics with many integral points, private communication, September 1994.
- [dW] B. M. M. de Weger, Algorithms for diophantine equations, CWI Tract 65, Centre for Mathematics and Computer Science, Amsterdam, 1989.
- [Z] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436 Zbl0611.10008
Citations in EuDML Documents
top- Emanuel Herrmann, Attila Pethö, -integral points on elliptic curves - Notes on a paper of B. M. M. de Weger
- Hayder Raheem Hashim, Szabolcs Tengely, Lucas sequences and repdigits
- Benjamin M. M. de Weger, -integral solutions to a Weierstrass equation
- Roelof J. Stroeker, Benjamin M. M. de Weger, Solving elliptic diophantine equations: the general cubic case
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.