Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations

N. Tzanakis

Acta Arithmetica (1996)

  • Volume: 75, Issue: 2, page 165-190
  • ISSN: 0065-1036

How to cite

top

N. Tzanakis. "Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations." Acta Arithmetica 75.2 (1996): 165-190. <http://eudml.org/doc/206868>.

@article{N1996,
author = {N. Tzanakis},
journal = {Acta Arithmetica},
keywords = {elliptic curve; elliptic diophantine equations; effective computation; linear forms in elliptic logarithms; quartic elliptic equations},
language = {eng},
number = {2},
pages = {165-190},
title = {Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations},
url = {http://eudml.org/doc/206868},
volume = {75},
year = {1996},
}

TY - JOUR
AU - N. Tzanakis
TI - Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms. The case of quartic equations
JO - Acta Arithmetica
PY - 1996
VL - 75
IS - 2
SP - 165
EP - 190
LA - eng
KW - elliptic curve; elliptic diophantine equations; effective computation; linear forms in elliptic logarithms; quartic elliptic equations
UR - http://eudml.org/doc/206868
ER -

References

top
  1. [B] R. T. Bumby, The diophantine equation 3x⁴-2y²=1, Math. Scand. 21 (1967), 144-148. Zbl0169.37402
  2. [Cn] I. Connell, Addendum to a paper of Harada and Lang, J. Algebra 145 (1992), 463-467. Zbl0759.11021
  3. [Cx] D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 275-330. Zbl0583.33002
  4. [Da] S. David, Minorations de formes linéaires de logarithmes elliptiques, Mém. 62 Soc. Math. France (Suppl. to Bull. Soc. Math. France 123 (3) (1995)), to appear. 
  5. [Di] L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1971. 
  6. [GPZ] J. Gebel, A. Pethő and H. G. Zimmer, Computing integral points on elliptic curves, Acta Arith. 68 (1994), 171-192. Zbl0816.11019
  7. [G] R. K. Guy, Reviews in Number Theory 1973-83, Vol. 2A, Amer. Math. Soc., Providence, R.I., 1984. Zbl0598.10001
  8. [HK] N. Hirata-Kohno, Formes linéaires de logarithmes de points algébriques sur les groupes algébriques, Invent. Math. 104 (1991), 401-433. Zbl0704.11016
  9. [LLL] A. K. Lenstra, H. W. Lenstra and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534. Zbl0488.12001
  10. [LV] W. J. LeVeque, Reviews in Number Theory 1940-72, Vol. 2, Amer. Math. Soc., Providence, R.I., 1974. 
  11. [L1] W. Ljunggren, Einige Sätze über unbestimmte Gleichungen von der Form Ax⁴ +Bx² +C = Dy², Vid.-Akad. Skrifter I (9) (1942), 53 pp. 
  12. [L2] W. Ljunggren, Zur Theorie der Gleichung X² +1 = DY⁴, Avh. Norske Vid. Akad. Oslo I (5) (1942), 27 pp. 
  13. [L3] W. Ljunggren, Proof of a theorem of de Jonquières, Norsk Mat. Tidsskrift 26 (1944), 3-8 (in Norwegian). 
  14. [S1] J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358. Zbl0656.14016
  15. [S2] J. H. Silverman, The difference between the Weil height and the canonical height on elliptic curves, Math. Comp. 55 (1990), 723-743. Zbl0729.14026
  16. [StT] R. Steiner and N. Tzanakis, Simplifying the solution of Ljunggren's equation X² +1 = 2Y⁴, J. Number Theory 37 (1991), 123-132. Zbl0716.11016
  17. [Str] R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Math. 97 (1995), 295-307. Zbl0837.11012
  18. [ST] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in elliptic logarithms, Acta Arith. 67 (1994), 177-196. Zbl0805.11026
  19. [SW] R. J. Stroeker and B. M. M. de Weger, On a quartic Diophantine equation, Proc. Edinburgh Math. Soc., to appear. 
  20. [T1] J. Top, Fermat's 'primitive solutions' and some arithmetic of elliptic curves, Indag. Math. 4 (1993), 211-222. Zbl0787.11022
  21. [T2] J. Top, Examples of elliptic quartics with many integral points, private communication, September 1994. 
  22. [dW] B. M. M. de Weger, Algorithms for diophantine equations, CWI Tract 65, Centre for Mathematics and Computer Science, Amsterdam, 1989. 
  23. [Z] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436 Zbl0611.10008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.