On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 2, page 229-244
  • ISSN: 0010-2628

Abstract

top
We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable space is completely metrizable, (b) every countably subcompact metrizable space is subcompact, (c) every completely metrizable space is subcompact, is relatively consistent with ZF. (v) AC if and only if for every family { 𝐗 i : i I } of metrizable subcompact spaces, for every family { i : i I } such that for every i I , i is a subcompact base for 𝐗 i , the Tychonoff product 𝐗 = i I 𝐗 i is subcompact with respect to the standard base of 𝐗 generated by the family { i : i I } .

How to cite

top

Keremedis, Kyriakos. "On subcompactness and countable subcompactness of metrizable spaces in ZF." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 229-244. <http://eudml.org/doc/298522>.

@article{Keremedis2022,
abstract = {We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space $\mathbf \{X\}=(X,T)$ is countably compact if and only if it is countably subcompact relative to $T$. (iii) For every metrizable space $\mathbf \{X\}=(X,T)$, the following are equivalent: (a) $\mathbf \{X\}$ is compact; (b) for every open filter $\mathcal \{F\}$ of $\mathbf \{X\}$, $\bigcap \lbrace \overline\{F\}\colon F\in \mathcal \{F\}\rbrace \ne \emptyset $; (c) $\mathbf \{X\}$ is subcompact relative to $T$. We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable space is completely metrizable, (b) every countably subcompact metrizable space is subcompact, (c) every completely metrizable space is subcompact, is relatively consistent with ZF. (v) AC if and only if for every family $\lbrace \mathbf \{X\}_\{i\}\colon i\in I\rbrace $ of metrizable subcompact spaces, for every family $\lbrace \mathcal \{B\}_\{i\}\colon i\in I\rbrace $ such that for every $i\in I$, $\mathcal \{B\}_\{i\}$ is a subcompact base for $\mathbf \{X\}_\{i\}$, the Tychonoff product $\mathbf \{X\}=\prod _\{i\in I\} \mathbf \{X\}_\{i\}$ is subcompact with respect to the standard base $\mathcal \{B\}$ of $\mathbf \{X\}$ generated by the family $\lbrace \mathcal \{B\}_\{i\}\colon i\in I\rbrace $.},
author = {Keremedis, Kyriakos},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; compact; countably compact; subcompact; countably subcompact; lightly compact metric space},
language = {eng},
number = {2},
pages = {229-244},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On subcompactness and countable subcompactness of metrizable spaces in ZF},
url = {http://eudml.org/doc/298522},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Keremedis, Kyriakos
TI - On subcompactness and countable subcompactness of metrizable spaces in ZF
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 229
EP - 244
AB - We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space $\mathbf {X}=(X,T)$ is countably compact if and only if it is countably subcompact relative to $T$. (iii) For every metrizable space $\mathbf {X}=(X,T)$, the following are equivalent: (a) $\mathbf {X}$ is compact; (b) for every open filter $\mathcal {F}$ of $\mathbf {X}$, $\bigcap \lbrace \overline{F}\colon F\in \mathcal {F}\rbrace \ne \emptyset $; (c) $\mathbf {X}$ is subcompact relative to $T$. We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable space is completely metrizable, (b) every countably subcompact metrizable space is subcompact, (c) every completely metrizable space is subcompact, is relatively consistent with ZF. (v) AC if and only if for every family $\lbrace \mathbf {X}_{i}\colon i\in I\rbrace $ of metrizable subcompact spaces, for every family $\lbrace \mathcal {B}_{i}\colon i\in I\rbrace $ such that for every $i\in I$, $\mathcal {B}_{i}$ is a subcompact base for $\mathbf {X}_{i}$, the Tychonoff product $\mathbf {X}=\prod _{i\in I} \mathbf {X}_{i}$ is subcompact with respect to the standard base $\mathcal {B}$ of $\mathbf {X}$ generated by the family $\lbrace \mathcal {B}_{i}\colon i\in I\rbrace $.
LA - eng
KW - axiom of choice; compact; countably compact; subcompact; countably subcompact; lightly compact metric space
UR - http://eudml.org/doc/298522
ER -

References

top
  1. Brunner N., Lindelöf Räume und Auswahlaxiom, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 119 (1982), no. 9, 161–165 (German, English summary). MR0728812
  2. Brunner N., 10.1002/malq.19830290804, Z. Math. Logik Grundlagen Math. 29 (1983), no. 5, 435–443 (German). MR0716858DOI10.1002/malq.19830290804
  3. Dow A., Porter J. R., Stephenson R. M., Jr., Woods R. G., 10.4995/agt.2004.1973, Appl. Gen. Topol. 5 (2004), no. 2, 243–264. Zbl1066.54024MR2121792DOI10.4995/agt.2004.1973
  4. Good C., Tree I. J., 10.1016/0166-8641(95)90010-1, Topology Appl. 63 (1995), no. 1, 79–90. MR1328621DOI10.1016/0166-8641(95)90010-1
  5. de Groot J., 10.1016/S1385-7258(63)50076-6, Nederl. Akad. Wetensch. Proc. Ser. A 66=Indag. Math. 25 (1963), 761–767. MR0159303DOI10.1016/S1385-7258(63)50076-6
  6. Herrlich H., Products of Lindelöf T 2 -spaces are Lindelöf – in some models of ZF, Comment. Math. Univ. Carolin. 43 (2002), no. 2, 319–333. MR1922130
  7. Howard P., Rubin J. E., 10.1090/surv/059, Mathematical Surveys and Monographs, 59, American Mathematical Society, Providence, 1998. Zbl0947.03001MR1637107DOI10.1090/surv/059
  8. Ikeda Y., Čech-completeness and countably subcompactness, Topology Proc. 14 (1989), no. 1, 75–87. MR1081121
  9. Keremedis K., 10.1016/j.topol.2012.08.003, Topology Appl. 159 (2012), no. 16, 3396–3403. MR2964853DOI10.1016/j.topol.2012.08.003
  10. Keremedis K., 10.4064/ba8087-12-2016, Bull. Pol. Acad. Sci. Math. 64 (2016), no. 1, 29–46. MR3550611DOI10.4064/ba8087-12-2016
  11. Keremedis K., 10.4064/ba8131-10-2018, Bull. Pol. Acad. Sci. Math. 66 (2018), no. 2, 99–113. MR3892754DOI10.4064/ba8131-10-2018
  12. Keremedis K., 10.2989/16073606.2018.1463300, Quaest. Math. 42 (2019), no. 5, 579–592. MR3969540DOI10.2989/16073606.2018.1463300
  13. Keremedis K., Wajch E., 10.1016/j.topol.2020.107279, Topology Appl. 280 (2020), 107279, 21 pages. MR4108491DOI10.1016/j.topol.2020.107279
  14. Mardešić S., Papić P., Sur les espaces dont toute transformation réelle continue est bornée, Hrvatsko Prirod. Društvo. Glasnik Mat.-Fiz. Astr. Ser. II. 10 (1955), 225–232 (French, Serbo-Croatian summary). MR0080292
  15. Stone A. H., 10.2307/2372948, Amer. J. Math. 82 (1960), 900–914. MR0120620DOI10.2307/2372948
  16. Willard S., General Topology, Addison-Wesley Publishing Company, Reading, Mass.-London-Don Mills, 1970. Zbl1052.54001MR0264581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.