On the structure of the 2-Iwasawa module of some number fields of degree 16

Idriss Jerrari; Abdelmalek Azizi

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1145-1156
  • ISSN: 0011-4642

Abstract

top
Let K be an imaginary cyclic quartic number field whose 2-class group is of type ( 2 , 2 , 2 ) , i.e., isomorphic to / 2 × / 2 × / 2 . The aim of this paper is to determine the structure of the Iwasawa module of the genus field K ( * ) of K .

How to cite

top

Jerrari, Idriss, and Azizi, Abdelmalek. "On the structure of the 2-Iwasawa module of some number fields of degree 16." Czechoslovak Mathematical Journal 72.4 (2022): 1145-1156. <http://eudml.org/doc/298923>.

@article{Jerrari2022,
abstract = {Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb \{Z\}/2\mathbb \{Z\}\times \mathbb \{Z\}/2\mathbb \{Z\}\times \mathbb \{Z\}/2\mathbb \{Z\}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^\{(*)\}$ of $K$.},
author = {Jerrari, Idriss, Azizi, Abdelmalek},
journal = {Czechoslovak Mathematical Journal},
keywords = {cyclic quartic field; cyclotomic $\mathbb \{Z\}_2$-extension; 2-Iwasawa module; 2-class group; 2-rank},
language = {eng},
number = {4},
pages = {1145-1156},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the structure of the 2-Iwasawa module of some number fields of degree 16},
url = {http://eudml.org/doc/298923},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Jerrari, Idriss
AU - Azizi, Abdelmalek
TI - On the structure of the 2-Iwasawa module of some number fields of degree 16
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1145
EP - 1156
AB - Let $K$ be an imaginary cyclic quartic number field whose 2-class group is of type $(2, 2, 2)$, i.e., isomorphic to $\mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}\times \mathbb {Z}/2\mathbb {Z}$. The aim of this paper is to determine the structure of the Iwasawa module of the genus field $K^{(*)}$ of $K$.
LA - eng
KW - cyclic quartic field; cyclotomic $\mathbb {Z}_2$-extension; 2-Iwasawa module; 2-class group; 2-rank
UR - http://eudml.org/doc/298923
ER -

References

top
  1. Azizi, A., Jerrari, I., Zekhnini, A., Talbi, M., 10.1016/j.jnt.2017.01.027, J. Number Theory 177 (2017), 562-588. (2017) Zbl1428.11190MR3629256DOI10.1016/j.jnt.2017.01.027
  2. Brown, E., Parry, C. J., 10.1515/crll.1977.295.61, J. Reine Angew. Math. 295 (1977), 61-71. (1977) Zbl0355.12007MR0457398DOI10.1515/crll.1977.295.61
  3. Chems-Eddin, M. M., The 2-Iwasawa module over certain octic elementary fields, Available at https://arxiv.org/abs/2007.05953 (2020), 4 pages. (2020) 
  4. Chems-Eddin, M. M., The rank of the 2-class group of some fields with large degree, Available at https://arxiv.org/abs/2001.00865 (2020), 9 pages. (2020) MR4414147
  5. Gras, G., 10.5802/aif.471, Ann. Inst. Fourier 23 (1973), 1-48 French. (1973) Zbl0276.12013MR360519DOI10.5802/aif.471
  6. Gras, G., 10.1007/978-3-662-11323-3, Springer Monographs in Mathematics. Springer, Berlin (2003). (2003) Zbl1019.11032MR1941965DOI10.1007/978-3-662-11323-3
  7. Greenberg, R., 10.2307/2373625, Am. J. Math. 98 (1976), 263-284. (1976) Zbl0334.12013MR0401702DOI10.2307/2373625
  8. Ishida, M., 10.1007/BFb0100829, Lecture Notes in Mathematics 555. Springer, Berlin (1976). (1976) Zbl0353.12001MR435028DOI10.1007/BFb0100829
  9. Kida, Y., 10.1016/0022-314X(82)90069-5, J. Number Theory 14 (1982), 340-352. (1982) Zbl0493.12015MR0660379DOI10.1016/0022-314X(82)90069-5
  10. Lemmermeyer, F., 10.1007/978-3-662-12893-0, Springer Monographs in Mathematics. Springer, Berlin (2000). (2000) Zbl0949.11002MR1761696DOI10.1007/978-3-662-12893-0
  11. Müller, K., 10.1017/S0305004118000026, Math. Proc. Camb. Philos. Soc. 166 (2019), 371-380. (2019) Zbl1462.11099MR3903123DOI10.1017/S0305004118000026
  12. Washington, L. C., 10.1007/978-1-4612-1934-7, Graduate Texts in Mathematics 83. Springer, New York (1997). (1997) Zbl0966.11047MR1421575DOI10.1007/978-1-4612-1934-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.