Classification of ideals of 8 -dimensional Radford Hopf algebra

Yu Wang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1019-1028
  • ISSN: 0011-4642

Abstract

top
Let H m , n be the m n 2 -dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of 8 -dimensional Radford Hopf algebra H 2 , 2 by generators.

How to cite

top

Wang, Yu. "Classification of ideals of $8$-dimensional Radford Hopf algebra." Czechoslovak Mathematical Journal 72.4 (2022): 1019-1028. <http://eudml.org/doc/298924>.

@article{Wang2022,
abstract = {Let $H_\{m,n\}$ be the $mn^2$-dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of $8$-dimensional Radford Hopf algebra $H_\{2,2\}$ by generators.},
author = {Wang, Yu},
journal = {Czechoslovak Mathematical Journal},
keywords = {ideal; Radford Hopf algebra; principal ideal ring},
language = {eng},
number = {4},
pages = {1019-1028},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Classification of ideals of $8$-dimensional Radford Hopf algebra},
url = {http://eudml.org/doc/298924},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Wang, Yu
TI - Classification of ideals of $8$-dimensional Radford Hopf algebra
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1019
EP - 1028
AB - Let $H_{m,n}$ be the $mn^2$-dimensional Radford Hopf algebra over an algebraically closed field of characteristic zero. We give the classification of all ideals of $8$-dimensional Radford Hopf algebra $H_{2,2}$ by generators.
LA - eng
KW - ideal; Radford Hopf algebra; principal ideal ring
UR - http://eudml.org/doc/298924
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  3. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  4. Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. American Mathematical Society, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
  5. Radford, D. E., 10.1090/S0002-9939-1975-0396652-0, Proc. Am. Math. Soc. 53 (1975), 9-15. (1975) Zbl0324.16009MR396652DOI10.1090/S0002-9939-1975-0396652-0
  6. Wang, Z., Li, L., Zhang, Y., 10.1007/s10468-014-9484-9, Algebr. Represent. Theory 17 (2014), 1901-1924. (2014) Zbl1318.16032MR3284336DOI10.1007/s10468-014-9484-9
  7. Wang, Z., Li, L., Zhang, Y., 10.1016/j.jalgebra.2015.11.002, J. Algebra 449 (2016), 108-137. (2016) Zbl1338.16039MR3448167DOI10.1016/j.jalgebra.2015.11.002
  8. Wang, Y., Zheng, Y., Li, L., 10.1080/00927872.2021.1914073, Commun. Algebra 49 (2021), 4109-4122. (2021) Zbl07431245MR4296825DOI10.1080/00927872.2021.1914073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.