Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra U r , s ( 𝔰𝔩 2 )

Yu Wang; Xiaoming Li

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 715-731
  • ISSN: 0011-4642

Abstract

top
Let U be the two-parameter quantized enveloping algebra U r , s ( 𝔰𝔩 2 ) and F ( U ) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F ( U ) in the case when r s - 1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.

How to cite

top

Wang, Yu, and Li, Xiaoming. "Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$." Czechoslovak Mathematical Journal 73.3 (2023): 715-731. <http://eudml.org/doc/299101>.

@article{Wang2023,
abstract = {Let $U$ be the two-parameter quantized enveloping algebra $U_\{r,s\}(\mathfrak \{sl\}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^\{-1\}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.},
author = {Wang, Yu, Li, Xiaoming},
journal = {Czechoslovak Mathematical Journal},
keywords = {two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal},
language = {eng},
number = {3},
pages = {715-731},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_\{r,s\}(\mathfrak \{sl\}_2)$},
url = {http://eudml.org/doc/299101},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Wang, Yu
AU - Li, Xiaoming
TI - Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 715
EP - 731
AB - Let $U$ be the two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^{-1}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.
LA - eng
KW - two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal
UR - http://eudml.org/doc/299101
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  3. Benkart, G., Kang, S.-J., Lee, K.-H., 10.1017/S0308210500005011, Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 445-472. (2006) Zbl1106.17013MR2227803DOI10.1017/S0308210500005011
  4. Benkart, G., Witherspoon, S., Representations of two-parameter quantum groups and Schur-Weyl duality, Hopf Algebras Lecture Notes in Pure and Applied Mathematics 237. Marcel Dekker, New York (2004), 65-92. (2004) Zbl1048.16021MR2051731
  5. Benkart, G., Witherspoon, S., 10.1023/B:ALGE.0000031151.86090.2e, Algebr. Represent. Theory 7 (2004), 261-286. (2004) Zbl1113.16041MR2070408DOI10.1023/B:ALGE.0000031151.86090.2e
  6. Burdík, Č., Navrátil, O., Pošta, S., 10.1142/S1402925109000066, J. Nonlinear Math. Phys. 16 (2009), 63-75. (2009) Zbl1166.81337MR2571814DOI10.1142/S1402925109000066
  7. Catoiu, S., 10.1006/jabr.1997.7284, J. Algebra 202 (1998), 142-177. (1998) Zbl0970.17009MR1614186DOI10.1006/jabr.1997.7284
  8. Joseph, A., 10.1007/978-3-642-78400-2, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 29. Springer, Berlin (1995). (1995) Zbl0808.17004MR1315966DOI10.1007/978-3-642-78400-2
  9. Joseph, A., Letzter, G., 10.1016/0021-8693(92)90157-H, J. Algebra 153 (1992), 289-318. (1992) Zbl0779.17012MR1198203DOI10.1016/0021-8693(92)90157-H
  10. Joseph, A., Letzter, G., 10.2307/2374984, Am. J. Math. 116 (1994), 127-177. (1994) Zbl0811.17007MR1262429DOI10.2307/2374984
  11. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  12. Kolb, S., Lorenz, M., Nguyen, B., Yammine, R., 10.1017/S0013091520000358, Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 1092-1099. (2020) Zbl1462.16035MR4197323DOI10.1017/S0013091520000358
  13. Li, L., Zhang, P., Quantum adjoint action for 𝒰 q ( s l ( 2 ) ) , Algebra Colloq. 7 (2000), 369-379. (2000) Zbl0985.16024MR1805955
  14. Li, L., Zhang, P., 10.1081/AGB-100106790, Commun. Algebra 29 (2001), 4853-4870. (2001) Zbl0989.17008MR1856919DOI10.1081/AGB-100106790
  15. Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
  16. Passman, D. S., The Algebraic Structure of Group Rings, Pure and Applied Mathematics. John Wiley & Sons, New York (1977). (1977) Zbl0368.16003MR0470211
  17. Takeuchi, M., 10.3792/pjaa.66.112, Proc. Japan Acad., Ser. A 66 (1990), 112-114. (1990) Zbl0723.17012MR1065785DOI10.3792/pjaa.66.112
  18. Wang, Y., Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one, Available at https://arxiv.org/abs/2205.14603v2 (2022), 21 pages. (2022) 
  19. Wang, Y., 10.21136/CMJ.2022.0313-21, Czech. Math. J. 72 (2022), 1019-1028. (2022) Zbl7655778MR4517591DOI10.21136/CMJ.2022.0313-21
  20. Wang, Y., Wang, Z., Li, L., 10.1142/S1005386721000274, Algebra Colloq. 28 (2021), 351-360. (2021) Zbl1475.16035MR4256338DOI10.1142/S1005386721000274
  21. Wang, Y., Zheng, Y., Li, L., 10.1080/00927872.2021.1914073, Commun. Algebra 49 (2021), 4109-4122. (2021) Zbl1491.16034MR4296825DOI10.1080/00927872.2021.1914073

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.