Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 715-731
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Yu, and Li, Xiaoming. "Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$." Czechoslovak Mathematical Journal 73.3 (2023): 715-731. <http://eudml.org/doc/299101>.
@article{Wang2023,
abstract = {Let $U$ be the two-parameter quantized enveloping algebra $U_\{r,s\}(\mathfrak \{sl\}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^\{-1\}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.},
author = {Wang, Yu, Li, Xiaoming},
journal = {Czechoslovak Mathematical Journal},
keywords = {two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal},
language = {eng},
number = {3},
pages = {715-731},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_\{r,s\}(\mathfrak \{sl\}_2)$},
url = {http://eudml.org/doc/299101},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Wang, Yu
AU - Li, Xiaoming
TI - Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 715
EP - 731
AB - Let $U$ be the two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^{-1}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators.
LA - eng
KW - two-parameter quantum group; locally finite subalgebra; adjoint action; annihilator ideal
UR - http://eudml.org/doc/299101
ER -
References
top- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
- Benkart, G., Kang, S.-J., Lee, K.-H., 10.1017/S0308210500005011, Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 445-472. (2006) Zbl1106.17013MR2227803DOI10.1017/S0308210500005011
- Benkart, G., Witherspoon, S., Representations of two-parameter quantum groups and Schur-Weyl duality, Hopf Algebras Lecture Notes in Pure and Applied Mathematics 237. Marcel Dekker, New York (2004), 65-92. (2004) Zbl1048.16021MR2051731
- Benkart, G., Witherspoon, S., 10.1023/B:ALGE.0000031151.86090.2e, Algebr. Represent. Theory 7 (2004), 261-286. (2004) Zbl1113.16041MR2070408DOI10.1023/B:ALGE.0000031151.86090.2e
- Burdík, Č., Navrátil, O., Pošta, S., 10.1142/S1402925109000066, J. Nonlinear Math. Phys. 16 (2009), 63-75. (2009) Zbl1166.81337MR2571814DOI10.1142/S1402925109000066
- Catoiu, S., 10.1006/jabr.1997.7284, J. Algebra 202 (1998), 142-177. (1998) Zbl0970.17009MR1614186DOI10.1006/jabr.1997.7284
- Joseph, A., 10.1007/978-3-642-78400-2, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 29. Springer, Berlin (1995). (1995) Zbl0808.17004MR1315966DOI10.1007/978-3-642-78400-2
- Joseph, A., Letzter, G., 10.1016/0021-8693(92)90157-H, J. Algebra 153 (1992), 289-318. (1992) Zbl0779.17012MR1198203DOI10.1016/0021-8693(92)90157-H
- Joseph, A., Letzter, G., 10.2307/2374984, Am. J. Math. 116 (1994), 127-177. (1994) Zbl0811.17007MR1262429DOI10.2307/2374984
- Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
- Kolb, S., Lorenz, M., Nguyen, B., Yammine, R., 10.1017/S0013091520000358, Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 1092-1099. (2020) Zbl1462.16035MR4197323DOI10.1017/S0013091520000358
- Li, L., Zhang, P., Quantum adjoint action for , Algebra Colloq. 7 (2000), 369-379. (2000) Zbl0985.16024MR1805955
- Li, L., Zhang, P., 10.1081/AGB-100106790, Commun. Algebra 29 (2001), 4853-4870. (2001) Zbl0989.17008MR1856919DOI10.1081/AGB-100106790
- Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
- Passman, D. S., The Algebraic Structure of Group Rings, Pure and Applied Mathematics. John Wiley & Sons, New York (1977). (1977) Zbl0368.16003MR0470211
- Takeuchi, M., 10.3792/pjaa.66.112, Proc. Japan Acad., Ser. A 66 (1990), 112-114. (1990) Zbl0723.17012MR1065785DOI10.3792/pjaa.66.112
- Wang, Y., Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one, Available at https://arxiv.org/abs/2205.14603v2 (2022), 21 pages. (2022)
- Wang, Y., 10.21136/CMJ.2022.0313-21, Czech. Math. J. 72 (2022), 1019-1028. (2022) Zbl7655778MR4517591DOI10.21136/CMJ.2022.0313-21
- Wang, Y., Wang, Z., Li, L., 10.1142/S1005386721000274, Algebra Colloq. 28 (2021), 351-360. (2021) Zbl1475.16035MR4256338DOI10.1142/S1005386721000274
- Wang, Y., Zheng, Y., Li, L., 10.1080/00927872.2021.1914073, Commun. Algebra 49 (2021), 4109-4122. (2021) Zbl1491.16034MR4296825DOI10.1080/00927872.2021.1914073
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.