On higher moments of Hecke eigenvalues attached to cusp forms

Guodong Hua

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1055-1064
  • ISSN: 0011-4642

Abstract

top
Let f , g and h be three distinct primitive holomorphic cusp forms of even integral weights k 1 , k 2 and k 3 for the full modular group Γ = SL ( 2 , ) , respectively, and let λ f ( n ) , λ g ( n ) and λ h ( n ) denote the n th normalized Fourier coefficients of f , g and h , respectively. We consider the cancellations of sums related to arithmetic functions λ g ( n ) , λ h ( n ) twisted by λ f ( n ) and establish the following results: n x λ f ( n ) λ g ( n ) i λ h ( n ) j f , g , h , ε x 1 - 1 / 2 i + j + ε for any ε > 0 , where 1 i 2 , j 5 are any fixed positive integers.

How to cite

top

Hua, Guodong. "On higher moments of Hecke eigenvalues attached to cusp forms." Czechoslovak Mathematical Journal 72.4 (2022): 1055-1064. <http://eudml.org/doc/298925>.

@article{Hua2022,
abstract = {Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_\{1\}$, $k_\{2\}$ and $k_\{3\}$ for the full modular group $\Gamma =\{\rm SL\}(2,\mathbb \{Z\})$, respectively, and let $\lambda _\{f\}(n)$, $\lambda _\{g\}(n)$ and $\lambda _\{h\}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _\{g\}(n)$, $\lambda _\{h\}(n)$ twisted by $\lambda _\{f\}(n)$ and establish the following results: \[ \sum \_\{n\le x\}\lambda \_\{f\}(n)\lambda \_\{g\}(n)^\{i\}\lambda \_\{h\}(n)^\{j\} \ll \_\{f,g,h,\varepsilon \} x^\{1- 1/2^\{i+j\} +\varepsilon \} \] for any $\varepsilon >0$, where $1\le i\le 2$, $j\ge 5$ are any fixed positive integers.},
author = {Hua, Guodong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function},
language = {eng},
number = {4},
pages = {1055-1064},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On higher moments of Hecke eigenvalues attached to cusp forms},
url = {http://eudml.org/doc/298925},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Hua, Guodong
TI - On higher moments of Hecke eigenvalues attached to cusp forms
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1055
EP - 1064
AB - Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: \[ \sum _{n\le x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } \] for any $\varepsilon >0$, where $1\le i\le 2$, $j\ge 5$ are any fixed positive integers.
LA - eng
KW - Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
UR - http://eudml.org/doc/298925
ER -

References

top
  1. Clozel, L., Thorne, J. A., 10.1112/S0010437X13007653, Compos. Math. 150 (2014), 729-748. (2014) Zbl1304.11040MR3209793DOI10.1112/S0010437X13007653
  2. Clozel, L., Thorne, J. A., 10.4007/annals.2015.181.1.5, Ann. Math. (2) 181 (2015), 303-359. (2015) Zbl1339.11060MR3272927DOI10.4007/annals.2015.181.1.5
  3. Clozel, L., Thorne, J. A., 10.1215/00127094-3714971, Duke Math. J. 166 (2017), 325-402. (2017) Zbl1372.11054MR3600753DOI10.1215/00127094-3714971
  4. Deligne, P., 10.1007/BF02684373, Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. (1974) Zbl0287.14001MR0340258DOI10.1007/BF02684373
  5. Fomenko, O. M., 10.1007/BF02172473, J. Math. Sci., New York 95 (1999), 2295-2316. (1999) Zbl0993.11023MR1691291DOI10.1007/BF02172473
  6. Gelbart, S., Jacquet, H., 10.24033/asens.1355, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. (1978) Zbl0406.10022MR0533066DOI10.24033/asens.1355
  7. Hecke, E., 10.1007/BF02952521, Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German 9999JFM99999 53.0345.02. (1927) MR3069476DOI10.1007/BF02952521
  8. Huang, B., 10.1007/s00208-021-02186-7, Math. Ann. 381 (2021), 1217-1251. (2021) Zbl1483.11098MR4333413DOI10.1007/s00208-021-02186-7
  9. Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
  10. Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A., 10.2307/2374264, Am. J. Math. 105 (1983), 367-464. (1983) Zbl0525.22018MR0701565DOI10.2307/2374264
  11. Jacquet, H., Shalika, J. A., 10.2307/2374103, Am. J. Math. 103 (1981), 499-558. (1981) Zbl0473.12008MR0618323DOI10.2307/2374103
  12. Jacquet, H., Shalika, J. A., 10.2307/2374050, Am. J. Math. 103 (1981), 777-815. (1981) Zbl0491.10020MR0623137DOI10.2307/2374050
  13. Kim, H. H., 10.1090/S0894-0347-02-00410-1, J. Am. Math. Soc. 16 (2003), 139-183. (2003) Zbl1018.11024MR1937203DOI10.1090/S0894-0347-02-00410-1
  14. Kim, H. H., Shahidi, F., 10.1215/S0012-9074-02-11215-0, Duke Math. J. 112 (2002), 177-197. (2002) Zbl1074.11027MR1890650DOI10.1215/S0012-9074-02-11215-0
  15. Kim, H. H., Shahidi, F., 10.2307/3062134, Ann. Math. (2) 155 (2002), 837-893. (2002) Zbl1040.11036MR1923967DOI10.2307/3062134
  16. Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
  17. Lü, G., 10.1007/s00605-012-0381-1, Montash. Math. 169 (2013), 409-422. (2013) Zbl1287.11059MR3019292DOI10.1007/s00605-012-0381-1
  18. Lü, G., Sankaranarayanan, A., 10.4153/CMB-2015-031-1, Can. Math. Bull. 58 (2015), 548-560. (2015) Zbl1385.11021MR3372871DOI10.4153/CMB-2015-031-1
  19. Moreno, C. J., Shahidi, F., 10.1007/BF01458445, Math. Ann. 266 (1983), 233-239. (1983) Zbl0508.10014MR0724740DOI10.1007/BF01458445
  20. Newton, J., Thorne, J. A., 10.1007/s10240-021-00127-3, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. (2021) Zbl07458825MR4349240DOI10.1007/s10240-021-00127-3
  21. Newton, J., Thorne, J. A., 10.1007/s10240-021-00126-4, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. (2021) Zbl07458826MR4349241DOI10.1007/s10240-021-00126-4
  22. Ramakrishnan, D., 10.2307/2661379, Ann. Math. (2) 152 (2000), 45-111. (2000) Zbl0989.11023MR1792292DOI10.2307/2661379
  23. Ramakrishnan, D., Wang, S., 10.1155/S1073792804132856, Int. Math. Res. Not. 27 (2004), 1355-1394. (2004) Zbl1089.11029MR2052020DOI10.1155/S1073792804132856
  24. Rankin, R. A., 10.1017/S0305004100021101, Proc. Camb. Philos. Soc. 35 (1939), 357-372. (1939) Zbl0021.39202MR0000411DOI10.1017/S0305004100021101
  25. Rankin, R. A., Sums of cusp form coefficients, Automorphic Forms and Anallytic Number Theory University of Montréal, Montréal (1990), 115-121. (1990) Zbl0735.11023MR1111014
  26. Rudnick, Z., Sarnak, P., 10.1215/S0012-7094-96-08115-6, Duke Math. J. 81 (1996), 269-322. (1996) Zbl0866.11050MR1395406DOI10.1215/S0012-7094-96-08115-6
  27. Selberg, A., Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. B 43 (1940), 47-50 German. (1940) Zbl0023.22201MR0002626
  28. Shahidi, F., 10.2307/2374219, Am. J. Math. 103 (1981), 297-355. (1981) Zbl0467.12013MR0610479DOI10.2307/2374219
  29. Shahidi, F., 10.2307/2374430, Am. J. Math. 106 (1984), 67-111. (1984) Zbl0567.22008MR0729755DOI10.2307/2374430
  30. Shahidi, F., 10.1215/S0012-7094-85-05252-4, Duke Math. J. 52 (1985), 973-1007. (1985) Zbl0674.10027MR0816396DOI10.1215/S0012-7094-85-05252-4
  31. Shahidi, F., Third symmetric power L -functions for G L ( 2 ) , Compos. Math. 70 (1989), 245-273. (1989) Zbl0684.10026MR1002045
  32. Shahidi, F., 10.2307/1971524, Ann. Math. (2) 132 (1990), 273-330. (1990) Zbl0780.22005MR1070599DOI10.2307/1971524
  33. Wilton, J. R., 10.1017/S0305004100018636, Proc. Camb. Philos. Soc. 25 (1929), 121-129 9999JFM99999 55.0709.02. (1929) MR3194792DOI10.1017/S0305004100018636
  34. Wu, J., 10.4064/aa137-4-3, Acta Arith. 137 (2009), 333-344. (2009) Zbl1232.11054MR2506587DOI10.4064/aa137-4-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.