On higher moments of Hecke eigenvalues attached to cusp forms
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1055-1064
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHua, Guodong. "On higher moments of Hecke eigenvalues attached to cusp forms." Czechoslovak Mathematical Journal 72.4 (2022): 1055-1064. <http://eudml.org/doc/298925>.
@article{Hua2022,
abstract = {Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_\{1\}$, $k_\{2\}$ and $k_\{3\}$ for the full modular group $\Gamma =\{\rm SL\}(2,\mathbb \{Z\})$, respectively, and let $\lambda _\{f\}(n)$, $\lambda _\{g\}(n)$ and $\lambda _\{h\}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _\{g\}(n)$, $\lambda _\{h\}(n)$ twisted by $\lambda _\{f\}(n)$ and establish the following results: \[ \sum \_\{n\le x\}\lambda \_\{f\}(n)\lambda \_\{g\}(n)^\{i\}\lambda \_\{h\}(n)^\{j\} \ll \_\{f,g,h,\varepsilon \} x^\{1- 1/2^\{i+j\} +\varepsilon \} \]
for any $\varepsilon >0$, where $1\le i\le 2$, $j\ge 5$ are any fixed positive integers.},
author = {Hua, Guodong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function},
language = {eng},
number = {4},
pages = {1055-1064},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On higher moments of Hecke eigenvalues attached to cusp forms},
url = {http://eudml.org/doc/298925},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Hua, Guodong
TI - On higher moments of Hecke eigenvalues attached to cusp forms
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1055
EP - 1064
AB - Let $f$, $g$ and $h$ be three distinct primitive holomorphic cusp forms of even integral weights $k_{1}$, $k_{2}$ and $k_{3}$ for the full modular group $\Gamma ={\rm SL}(2,\mathbb {Z})$, respectively, and let $\lambda _{f}(n)$, $\lambda _{g}(n)$ and $\lambda _{h}(n)$ denote the $n$th normalized Fourier coefficients of $f$, $g$ and $h$, respectively. We consider the cancellations of sums related to arithmetic functions $\lambda _{g}(n)$, $\lambda _{h}(n)$ twisted by $\lambda _{f}(n)$ and establish the following results: \[ \sum _{n\le x}\lambda _{f}(n)\lambda _{g}(n)^{i}\lambda _{h}(n)^{j} \ll _{f,g,h,\varepsilon } x^{1- 1/2^{i+j} +\varepsilon } \]
for any $\varepsilon >0$, where $1\le i\le 2$, $j\ge 5$ are any fixed positive integers.
LA - eng
KW - Hecke eigenform; Fourier coefficient; Rankin-Selberg $L$-function
UR - http://eudml.org/doc/298925
ER -
References
top- Clozel, L., Thorne, J. A., 10.1112/S0010437X13007653, Compos. Math. 150 (2014), 729-748. (2014) Zbl1304.11040MR3209793DOI10.1112/S0010437X13007653
- Clozel, L., Thorne, J. A., 10.4007/annals.2015.181.1.5, Ann. Math. (2) 181 (2015), 303-359. (2015) Zbl1339.11060MR3272927DOI10.4007/annals.2015.181.1.5
- Clozel, L., Thorne, J. A., 10.1215/00127094-3714971, Duke Math. J. 166 (2017), 325-402. (2017) Zbl1372.11054MR3600753DOI10.1215/00127094-3714971
- Deligne, P., 10.1007/BF02684373, Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. (1974) Zbl0287.14001MR0340258DOI10.1007/BF02684373
- Fomenko, O. M., 10.1007/BF02172473, J. Math. Sci., New York 95 (1999), 2295-2316. (1999) Zbl0993.11023MR1691291DOI10.1007/BF02172473
- Gelbart, S., Jacquet, H., 10.24033/asens.1355, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. (1978) Zbl0406.10022MR0533066DOI10.24033/asens.1355
- Hecke, E., 10.1007/BF02952521, Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German 9999JFM99999 53.0345.02. (1927) MR3069476DOI10.1007/BF02952521
- Huang, B., 10.1007/s00208-021-02186-7, Math. Ann. 381 (2021), 1217-1251. (2021) Zbl1483.11098MR4333413DOI10.1007/s00208-021-02186-7
- Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
- Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A., 10.2307/2374264, Am. J. Math. 105 (1983), 367-464. (1983) Zbl0525.22018MR0701565DOI10.2307/2374264
- Jacquet, H., Shalika, J. A., 10.2307/2374103, Am. J. Math. 103 (1981), 499-558. (1981) Zbl0473.12008MR0618323DOI10.2307/2374103
- Jacquet, H., Shalika, J. A., 10.2307/2374050, Am. J. Math. 103 (1981), 777-815. (1981) Zbl0491.10020MR0623137DOI10.2307/2374050
- Kim, H. H., 10.1090/S0894-0347-02-00410-1, J. Am. Math. Soc. 16 (2003), 139-183. (2003) Zbl1018.11024MR1937203DOI10.1090/S0894-0347-02-00410-1
- Kim, H. H., Shahidi, F., 10.1215/S0012-9074-02-11215-0, Duke Math. J. 112 (2002), 177-197. (2002) Zbl1074.11027MR1890650DOI10.1215/S0012-9074-02-11215-0
- Kim, H. H., Shahidi, F., 10.2307/3062134, Ann. Math. (2) 155 (2002), 837-893. (2002) Zbl1040.11036MR1923967DOI10.2307/3062134
- Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
- Lü, G., 10.1007/s00605-012-0381-1, Montash. Math. 169 (2013), 409-422. (2013) Zbl1287.11059MR3019292DOI10.1007/s00605-012-0381-1
- Lü, G., Sankaranarayanan, A., 10.4153/CMB-2015-031-1, Can. Math. Bull. 58 (2015), 548-560. (2015) Zbl1385.11021MR3372871DOI10.4153/CMB-2015-031-1
- Moreno, C. J., Shahidi, F., 10.1007/BF01458445, Math. Ann. 266 (1983), 233-239. (1983) Zbl0508.10014MR0724740DOI10.1007/BF01458445
- Newton, J., Thorne, J. A., 10.1007/s10240-021-00127-3, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. (2021) Zbl07458825MR4349240DOI10.1007/s10240-021-00127-3
- Newton, J., Thorne, J. A., 10.1007/s10240-021-00126-4, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. (2021) Zbl07458826MR4349241DOI10.1007/s10240-021-00126-4
- Ramakrishnan, D., 10.2307/2661379, Ann. Math. (2) 152 (2000), 45-111. (2000) Zbl0989.11023MR1792292DOI10.2307/2661379
- Ramakrishnan, D., Wang, S., 10.1155/S1073792804132856, Int. Math. Res. Not. 27 (2004), 1355-1394. (2004) Zbl1089.11029MR2052020DOI10.1155/S1073792804132856
- Rankin, R. A., 10.1017/S0305004100021101, Proc. Camb. Philos. Soc. 35 (1939), 357-372. (1939) Zbl0021.39202MR0000411DOI10.1017/S0305004100021101
- Rankin, R. A., Sums of cusp form coefficients, Automorphic Forms and Anallytic Number Theory University of Montréal, Montréal (1990), 115-121. (1990) Zbl0735.11023MR1111014
- Rudnick, Z., Sarnak, P., 10.1215/S0012-7094-96-08115-6, Duke Math. J. 81 (1996), 269-322. (1996) Zbl0866.11050MR1395406DOI10.1215/S0012-7094-96-08115-6
- Selberg, A., Bemerkungen über eine Dirichletsche, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. B 43 (1940), 47-50 German. (1940) Zbl0023.22201MR0002626
- Shahidi, F., 10.2307/2374219, Am. J. Math. 103 (1981), 297-355. (1981) Zbl0467.12013MR0610479DOI10.2307/2374219
- Shahidi, F., 10.2307/2374430, Am. J. Math. 106 (1984), 67-111. (1984) Zbl0567.22008MR0729755DOI10.2307/2374430
- Shahidi, F., 10.1215/S0012-7094-85-05252-4, Duke Math. J. 52 (1985), 973-1007. (1985) Zbl0674.10027MR0816396DOI10.1215/S0012-7094-85-05252-4
- Shahidi, F., Third symmetric power -functions for , Compos. Math. 70 (1989), 245-273. (1989) Zbl0684.10026MR1002045
- Shahidi, F., 10.2307/1971524, Ann. Math. (2) 132 (1990), 273-330. (1990) Zbl0780.22005MR1070599DOI10.2307/1971524
- Wilton, J. R., 10.1017/S0305004100018636, Proc. Camb. Philos. Soc. 25 (1929), 121-129 9999JFM99999 55.0709.02. (1929) MR3194792DOI10.1017/S0305004100018636
- Wu, J., 10.4064/aa137-4-3, Acta Arith. 137 (2009), 333-344. (2009) Zbl1232.11054MR2506587DOI10.4064/aa137-4-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.