On the higher power moments of cusp form coefficients over sums of two squares
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1089-1104
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHua, Guodong. "On the higher power moments of cusp form coefficients over sums of two squares." Czechoslovak Mathematical Journal 72.4 (2022): 1089-1104. <http://eudml.org/doc/298935>.
@article{Hua2022,
abstract = {Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma =\{\rm SL\} (2,\mathbb \{Z\})$. Denote by $\lambda _\{f\}(n)$ the $n$th normalized Fourier coefficient of $f$. We are interested in the average behaviour of the sum \[ \sum \_\{a^\{2\} + b^\{2\}\le x\} \lambda \_\{f\}^\{j\}(a^\{2\}+b^\{2\}) \]
for $x\ge 1$, where $a,b\in \mathbb \{Z\}$ and $j\ge 9$ is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power $L$-functions and Rankin-Selberg $L$-functions.},
author = {Hua, Guodong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Fourier coefficient; automorphic $L$-function; Langlands program},
language = {eng},
number = {4},
pages = {1089-1104},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the higher power moments of cusp form coefficients over sums of two squares},
url = {http://eudml.org/doc/298935},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Hua, Guodong
TI - On the higher power moments of cusp form coefficients over sums of two squares
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1089
EP - 1104
AB - Let $f$ be a normalized primitive holomorphic cusp form of even integral weight for the full modular group $\Gamma ={\rm SL} (2,\mathbb {Z})$. Denote by $\lambda _{f}(n)$ the $n$th normalized Fourier coefficient of $f$. We are interested in the average behaviour of the sum \[ \sum _{a^{2} + b^{2}\le x} \lambda _{f}^{j}(a^{2}+b^{2}) \]
for $x\ge 1$, where $a,b\in \mathbb {Z}$ and $j\ge 9$ is any fixed positive integer. In a similar manner, we also establish analogous results for the normalized coefficients of Dirichlet expansions of associated symmetric power $L$-functions and Rankin-Selberg $L$-functions.
LA - eng
KW - Fourier coefficient; automorphic $L$-function; Langlands program
UR - http://eudml.org/doc/298935
ER -
References
top- Clozel, L., Thorne, J. A., 10.1112/S0010437X13007653, Compos. Math. 150 (2014), 729-748. (2014) Zbl1304.11040MR3209793DOI10.1112/S0010437X13007653
- Clozel, L., Thorne, J. A., 10.4007/annals.2015.181.1.5, Ann. Math. (2) 181 (2015), 303-359. (2015) Zbl1339.11060MR3272927DOI10.4007/annals.2015.181.1.5
- Clozel, L., Thorne, J. A., 10.1215/00127094-3714971, Duke Math. J. 166 (2017), 325-402. (2017) Zbl1372.11054MR3600753DOI10.1215/00127094-3714971
- Deligne, P., 10.1007/BF02684373, Publ. Math., Inst. Hautes Étud. Sci. 43 (1974), 273-307 French. (1974) Zbl0287.14001MR0340258DOI10.1007/BF02684373
- Fomenko, O. M., 10.1007/BF02172473, J. Math. Sci., New York 95 (1999), 2295-2316. (1999) MR1691291DOI10.1007/BF02172473
- Fomenko, O. M., 10.1007/s10958-006-0086-x, J. Math. Sci., New York 133 (2006), 1749-1755. (2006) Zbl1094.11018MR2119744DOI10.1007/s10958-006-0086-x
- Fomenko, O. M., 10.1090/S1061-0022-08-01024-8, St. Petersbg. Math. J. 19 (2008), 853-866. (2008) Zbl1206.11061MR2381948DOI10.1090/S1061-0022-08-01024-8
- Gelbart, S., Jacquet, H., 10.24033/asens.1355, Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), 471-542. (1978) Zbl0406.10022MR0533066DOI10.24033/asens.1355
- Hafner, J. L., Ivić, A., 10.5169/seals-57381, Enseign. Math., II. Sér. 35 (1989), 375-382. (1989) Zbl0696.10020MR1039952DOI10.5169/seals-57381
- He, X., 10.1090/proc/14516, Proc. Am. Math. Soc. 147 (2019), 2847-2856. (2019) Zbl1431.11062MR3973888DOI10.1090/proc/14516
- Hecke, E., 10.1007/BF02952521, Abh. Math. Semin. Univ. Hamb. 5 (1927), 199-224 German 9999JFM99999 53.0345.02. (1927) MR3069476DOI10.1007/BF02952521
- Huang, B., 10.1007/s00208-021-02186-7, Math. Ann. 381 (2021), 1217-1251. (2021) Zbl07498337MR4333413DOI10.1007/s00208-021-02186-7
- Ivić, A., On zeta-functions associated with Fourier coefficients of cusp forms, Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salerno (1992), 231-246. (1992) Zbl0787.11035MR1220467
- Iwaniec, H., Kowalski, E., 10.1090/coll/053, Colloquium Publications. American Mathematical Society 53. AMS, Providence (2004). (2004) Zbl1059.11001MR2061214DOI10.1090/coll/053
- Jacquet, H., Piatetski-Shapiro, I. I., Shalika, J. A., 10.2307/2374264, Am. J. Math. 105 (1983), 367-464. (1983) Zbl0525.22018MR0701565DOI10.2307/2374264
- Jacquet, H., Shalika, J. A., 10.2307/2374103, Am. J. Math. 103 (1981), 499-558. (1981) Zbl0473.12008MR0618323DOI10.2307/2374103
- Jacquet, H., Shalika, J. A., 10.2307/2374050, Am. J. Math. 103 (1981), 777-815. (1981) Zbl0491.10020MR0623137DOI10.2307/2374050
- Jiang, Y., Lü, G., 10.1016/j.jnt.2014.09.008, J. Number Theory 148 (2015), 220-234. (2015) Zbl1380.11037MR3283177DOI10.1016/j.jnt.2014.09.008
- Kim, H. H., 10.1090/S0894-0347-02-00410-1, J. Am. Math. Soc. 16 (2003), 139-183. (2003) Zbl1018.11024MR1937203DOI10.1090/S0894-0347-02-00410-1
- Kim, H. H., Shahidi, F., 10.1215/S0012-9074-02-11215-0, Duke Math. J. 112 (2002), 177-197. (2002) Zbl1074.11027MR1890650DOI10.1215/S0012-9074-02-11215-0
- Kim, H. H., Shahidi, F., 10.2307/3062134, Ann. Math. (2) 155 (2002), 837-893. (2002) Zbl1040.11036MR1923967DOI10.2307/3062134
- Lao, H., Luo, S., 10.1216/rmj.2021.51.1701, Rocky Mt. J. Math. 51 (2021), 1701-1714. (2021) Zbl1486.11056MR4382993DOI10.1216/rmj.2021.51.1701
- Lau, Y.-K., Lü, G., 10.1093/qmath/haq012, Q. J. Math. 62 (2011), 687-716. (2011) Zbl1269.11044MR2825478DOI10.1093/qmath/haq012
- Lau, Y.-K., Lü, G., Wu, J., 10.4064/aa150-2-7, Acta Arith. 150 (2011), 193-207. (2011) Zbl1300.11042MR2836386DOI10.4064/aa150-2-7
- Lü, G., 10.1090/S0002-9939-08-09741-4, Proc. Am. Math. Soc. 137 (2009), 1961-1969. (2009) Zbl1241.11054MR2480277DOI10.1090/S0002-9939-08-09741-4
- Lü, G., 10.1016/j.jnt.2009.01.019, J. Number Theory 129 (2009), 2790-2800. (2009) Zbl1195.11060MR2549533DOI10.1016/j.jnt.2009.01.019
- Lü, G., 10.1007/s10474-009-8153-7, Acta Math. Hung. 124 (2009), 83-97. (2009) Zbl1200.11031MR2520619DOI10.1007/s10474-009-8153-7
- Lü, G., 10.4153/CJM-2011-010-5, Can. J. Math. 63 (2011), 634-647. (2011) Zbl1250.11046MR2828536DOI10.4153/CJM-2011-010-5
- Luo, S., Lao, H., Zou, A., 10.4064/aa191112-24-12, Acta Arith. 199 (2021), 253-268. (2021) Zbl1477.11079MR4296723DOI10.4064/aa191112-24-12
- Moreno, C. J., Shahidi, F., 10.1007/BF01458445, Math. Ann. 266 (1983), 233-239. (1983) Zbl0508.10014MR0724740DOI10.1007/BF01458445
- Newton, J., Thorne, J. A., 10.1007/s10240-021-00127-3, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 1-116. (2021) Zbl07458825MR4349240DOI10.1007/s10240-021-00127-3
- Newton, J., Thorne, J. A., 10.1007/s10240-021-00126-4, Publ. Math., Inst. Hautes Étud. Sci. 134 (2021), 117-152. (2021) Zbl07458826MR4349241DOI10.1007/s10240-021-00126-4
- Rankin, R. A., 10.1017/S0305004100021101, Proc. Camb. Philos. Soc. 35 (1939), 357-372. (1939) Zbl0021.39202MR0000411DOI10.1017/S0305004100021101
- Rankin, R. A., Sums of cusp form coefficients, Automorphic Forms and Analytic Number Theory University Montréal, Montréal (1990), 115-121. (1990) Zbl0735.11023MR1111014
- Rudnick, Z., Sarnak, P., 10.1215/S0012-7094-96-08115-6, Duke Math. J. 81 (1996), 269-322. (1996) Zbl0866.11050MR1395406DOI10.1215/S0012-7094-96-08115-6
- Sankaranarayanan, A., 10.1007/s10986-006-0042-y, Lith. Math. J. 46 (2006), 459-474. (2006) Zbl1162.11337MR2320364DOI10.1007/s10986-006-0042-y
- Sankaranarayanan, A., Singh, S. K., Srinivas, K., 10.4064/aa180819-6-10, Acta Arith. 190 (2019), 193-208. (2019) Zbl1465.11109MR3984265DOI10.4064/aa180819-6-10
- Selberg, A., Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47-50 German. (1940) Zbl0023.22201MR0002626
- Shahidi, F., 10.2307/2374219, Am. J. Math. 103 (1981), 297-355. (1981) Zbl0467.12013MR0610479DOI10.2307/2374219
- Shahidi, F., 10.2307/2374430, Am. J. Math. 106 (1984), 67-111. (1984) Zbl0567.22008MR0729755DOI10.2307/2374430
- Shahidi, F., 10.1215/S0012-7094-85-05252-4, Duke Math. J. 52 (1985), 973-1007. (1985) Zbl0674.10027MR0816396DOI10.1215/S0012-7094-85-05252-4
- Shahidi, F., Third symmetric power -functions for , Compos. Math. 70 (1989), 245-273. (1989) Zbl0684.10026MR1002045
- Shahidi, F., 10.2307/1971524, Ann. Math. (2) 132 (1990), 273-330. (1990) Zbl0780.22005MR1070599DOI10.2307/1971524
- Tang, H., 10.1007/s00013-013-0481-8, Arch. Math. 100 (2013), 123-130. (2013) Zbl1287.11061MR3020126DOI10.1007/s00013-013-0481-8
- Tang, H., Wu, J., 10.1016/j.jnt.2016.03.005, J. Number Theory 167 (2016), 147-160. (2016) Zbl1417.11050MR3504040DOI10.1016/j.jnt.2016.03.005
- Wu, J., 10.4064/aa137-4-3, Acta Arith. 137 (2009), 333-344. (2009) Zbl1232.11054MR2506587DOI10.4064/aa137-4-3
- Zhai, S., 10.1016/j.jnt.2013.05.013, J. Number Theory 133 (2013), 3862-3876. (2013) Zbl1295.11041MR3084303DOI10.1016/j.jnt.2013.05.013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.