Topological entropy and differential equations

Ján Andres; Pavel Ludvík

Archivum Mathematicum (2023)

  • Issue: 1, page 3-10
  • ISSN: 0044-8753

Abstract

top
On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.

How to cite

top

Andres, Ján, and Ludvík, Pavel. "Topological entropy and differential equations." Archivum Mathematicum (2023): 3-10. <http://eudml.org/doc/298976>.

@article{Andres2023,
abstract = {On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.},
author = {Andres, Ján, Ludvík, Pavel},
journal = {Archivum Mathematicum},
keywords = {topological entropy; impulsive differential equations; multivalued impulses; topological chaos},
language = {eng},
number = {1},
pages = {3-10},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Topological entropy and differential equations},
url = {http://eudml.org/doc/298976},
year = {2023},
}

TY - JOUR
AU - Andres, Ján
AU - Ludvík, Pavel
TI - Topological entropy and differential equations
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 1
SP - 3
EP - 10
AB - On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
LA - eng
KW - topological entropy; impulsive differential equations; multivalued impulses; topological chaos
UR - http://eudml.org/doc/298976
ER -

References

top
  1. Adler, R.L., Konheim, A.G., McAndrew, M.H., 10.1090/S0002-9947-1965-0175106-9, Trans. Amer. Math. Soc. 114 (1965), 309–319. (1965) DOI10.1090/S0002-9947-1965-0175106-9
  2. Andres, J., 10.14232/ejqtde.2020.1.68, Electron. J. Qual. Theory Differ. Equ. (2020), Paper No. 68, 1–15, Corrigendum to "Topological entropy for impulsive differential equations". Electron. J. Qual. Theory Differ. Equ., (2021) Paper No. 19, 1-3. (2020) MR4240274DOI10.14232/ejqtde.2020.1.68
  3. Andres, J., Chaos for differential equations with multivalued impulses, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 7, Paper No. 2150113, 16. (2021) MR4274346
  4. Andres, J., Topological chaos for differential inclusions with multivalued impulses on tori, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 15, Paper No. 2150237, 11. (2021) MR4348467
  5. Andres, J., 10.1016/j.jde.2022.02.008, J. Differential Equations 317 (2022), 365–386. (2022) MR4381660DOI10.1016/j.jde.2022.02.008
  6. Andres, J., Górniewicz, L., Topological fixed point principles for boundary value problems, Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2003. (2003) MR1998968
  7. Andres, J., Jezierski, J., 10.3390/math8091602, Mathematics 8 (2020), no. 9. (2020) DOI10.3390/math8091602
  8. Andres, J., Ludvík, P., 10.1016/j.chaos.2022.111800, Chaos Solitons Fractals 156 (2022), Paper No. 111800, 11. (2022) MR4364785DOI10.1016/j.chaos.2022.111800
  9. Anikushin, M.M., Raĭtmann, F., Development of the concept of topological entropy for systems with multidimensional time, Differ. Uravn. Protsessy Upr. 52 (2016), no. 4, 14–41. (2016) MR3593031
  10. Bowen, R., 10.1090/S0002-9947-1971-0274707-X, Trans. Amer. Math. Soc. 153 (1971), 401–414. (1971) DOI10.1090/S0002-9947-1971-0274707-X
  11. Cánovas, J. S., Rodríguez, J.M., 10.1016/j.topol.2005.01.006, Topology Appl. 153 (2005), no. 5-6, 735–746. (2005) MR2201485DOI10.1016/j.topol.2005.01.006
  12. Hoock, A.-M., Topological and invariance entropy for infinite-dimensional linear systems, J. Dyn. Control Syst. 20 (2014), no. 1, 19–31. (2014) MR3152112
  13. Jaque, N., San Martín, B., Topological entropy and metric entropy for regular impulsive semiflows, 2019, arXiv: 1909.09897. (2019) MR3912693
  14. Jaque, N., San Martín, B., 10.1016/j.jde.2018.09.013, J. Differential Equations 266 (2019), no. 6, 3580–3600. (2019) MR3912693DOI10.1016/j.jde.2018.09.013
  15. Jiang, B.J., Nielsen theory for periodic orbits and applications to dynamical systems, Nielsen theory and dynamical systems (South Hadley, MA, 1992), Contemp. Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 183–202. (1993) 
  16. Kawan, Ch., Matveev, A.S., Pogromsky, A.Yu., 10.1016/j.automatica.2020.109467, Automatica J. IFAC 125(4) (2021), 1–12. (2021) MR4200513DOI10.1016/j.automatica.2020.109467
  17. Kelly, J.P., Tennant, T., Topological entropy of set-valued functions, Houston J. Math. 43 (2017), no. 1, 263–282. (2017) MR3647945
  18. Krasnoselskiĭ, M.A., The operator of translation along the trajectories of differential equations, American Mathematical Society, Providence, R.I., 1968. (1968) 
  19. Matsuoka, T., 10.1007/BF01391795, Invent. Math. 70 (1982/83), no. 3, 319–340. (1982) DOI10.1007/BF01391795
  20. Matsuoka, T., 10.1016/0022-0396(88)90069-1, J. Differential Equations 76 (1988), no. 1, 190–201. (1988) DOI10.1016/0022-0396(88)90069-1
  21. Pogromsky, A.Yu., Matveev, A.S., 10.1088/0951-7715/24/7/002, Nonlinearity 24 (2011), no. 7, 1937–1959. (2011) MR2805587DOI10.1088/0951-7715/24/7/002
  22. Shiraiwa, K., 10.1017/S0027763000022571, Nagoya Math. J. 67 (1977), 121–138. (1977) DOI10.1017/S0027763000022571
  23. Tien, L., Nhien, L., 10.4236/jamp.2019.72032, Journal of Applied Mathematics and Physics 07 (2019), 418–429. (2019) DOI10.4236/jamp.2019.72032
  24. Vetokhin, A.N., Topological entropy of a diagonalizable linear system of differential equations., Int. Workshop QUALITDE-2020 (December 19-21, 2020) (Tbilisi, Georgia), 2021. (2021) 
  25. Walters, P., An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. (1982) 
  26. Wang, Z., Ma, J., Chen, Z., Zhang, Q., A new chaotic system with positive topological entropy, Entropy 17 (2015), no. 8, 5561–5579. (2015) MR3393999
  27. Wójcik, K., 10.1515/ans-2016-6021, Adv. Nonlinear Stud. 17 (2017), no. 3, 527–550. (2017) MR3667058DOI10.1515/ans-2016-6021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.