Topological entropy and differential equations
Archivum Mathematicum (2023)
- Issue: 1, page 3-10
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAndres, Ján, and Ludvík, Pavel. "Topological entropy and differential equations." Archivum Mathematicum (2023): 3-10. <http://eudml.org/doc/298976>.
@article{Andres2023,
abstract = {On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.},
author = {Andres, Ján, Ludvík, Pavel},
journal = {Archivum Mathematicum},
keywords = {topological entropy; impulsive differential equations; multivalued impulses; topological chaos},
language = {eng},
number = {1},
pages = {3-10},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Topological entropy and differential equations},
url = {http://eudml.org/doc/298976},
year = {2023},
}
TY - JOUR
AU - Andres, Ján
AU - Ludvík, Pavel
TI - Topological entropy and differential equations
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 1
SP - 3
EP - 10
AB - On the background of a brief survey panorama of results on the topic in the title, one new theorem is presented concerning a positive topological entropy (i.e. topological chaos) for the impulsive differential equations on the Cartesian product of compact intervals, which is positively invariant under the composition of the associated Poincaré translation operator with a multivalued upper semicontinuous impulsive mapping.
LA - eng
KW - topological entropy; impulsive differential equations; multivalued impulses; topological chaos
UR - http://eudml.org/doc/298976
ER -
References
top- Adler, R.L., Konheim, A.G., McAndrew, M.H., 10.1090/S0002-9947-1965-0175106-9, Trans. Amer. Math. Soc. 114 (1965), 309–319. (1965) DOI10.1090/S0002-9947-1965-0175106-9
- Andres, J., 10.14232/ejqtde.2020.1.68, Electron. J. Qual. Theory Differ. Equ. (2020), Paper No. 68, 1–15, Corrigendum to "Topological entropy for impulsive differential equations". Electron. J. Qual. Theory Differ. Equ., (2021) Paper No. 19, 1-3. (2020) MR4240274DOI10.14232/ejqtde.2020.1.68
- Andres, J., Chaos for differential equations with multivalued impulses, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 7, Paper No. 2150113, 16. (2021) MR4274346
- Andres, J., Topological chaos for differential inclusions with multivalued impulses on tori, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 31 (2021), no. 15, Paper No. 2150237, 11. (2021) MR4348467
- Andres, J., 10.1016/j.jde.2022.02.008, J. Differential Equations 317 (2022), 365–386. (2022) MR4381660DOI10.1016/j.jde.2022.02.008
- Andres, J., Górniewicz, L., Topological fixed point principles for boundary value problems, Topological Fixed Point Theory and Its Applications, vol. 1, Kluwer Academic Publishers, Dordrecht, 2003. (2003) MR1998968
- Andres, J., Jezierski, J., 10.3390/math8091602, Mathematics 8 (2020), no. 9. (2020) DOI10.3390/math8091602
- Andres, J., Ludvík, P., 10.1016/j.chaos.2022.111800, Chaos Solitons Fractals 156 (2022), Paper No. 111800, 11. (2022) MR4364785DOI10.1016/j.chaos.2022.111800
- Anikushin, M.M., Raĭtmann, F., Development of the concept of topological entropy for systems with multidimensional time, Differ. Uravn. Protsessy Upr. 52 (2016), no. 4, 14–41. (2016) MR3593031
- Bowen, R., 10.1090/S0002-9947-1971-0274707-X, Trans. Amer. Math. Soc. 153 (1971), 401–414. (1971) DOI10.1090/S0002-9947-1971-0274707-X
- Cánovas, J. S., Rodríguez, J.M., 10.1016/j.topol.2005.01.006, Topology Appl. 153 (2005), no. 5-6, 735–746. (2005) MR2201485DOI10.1016/j.topol.2005.01.006
- Hoock, A.-M., Topological and invariance entropy for infinite-dimensional linear systems, J. Dyn. Control Syst. 20 (2014), no. 1, 19–31. (2014) MR3152112
- Jaque, N., San Martín, B., Topological entropy and metric entropy for regular impulsive semiflows, 2019, arXiv: 1909.09897. (2019) MR3912693
- Jaque, N., San Martín, B., 10.1016/j.jde.2018.09.013, J. Differential Equations 266 (2019), no. 6, 3580–3600. (2019) MR3912693DOI10.1016/j.jde.2018.09.013
- Jiang, B.J., Nielsen theory for periodic orbits and applications to dynamical systems, Nielsen theory and dynamical systems (South Hadley, MA, 1992), Contemp. Math., vol. 152, Amer. Math. Soc., Providence, RI, 1993, pp. 183–202. (1993)
- Kawan, Ch., Matveev, A.S., Pogromsky, A.Yu., 10.1016/j.automatica.2020.109467, Automatica J. IFAC 125(4) (2021), 1–12. (2021) MR4200513DOI10.1016/j.automatica.2020.109467
- Kelly, J.P., Tennant, T., Topological entropy of set-valued functions, Houston J. Math. 43 (2017), no. 1, 263–282. (2017) MR3647945
- Krasnoselskiĭ, M.A., The operator of translation along the trajectories of differential equations, American Mathematical Society, Providence, R.I., 1968. (1968)
- Matsuoka, T., 10.1007/BF01391795, Invent. Math. 70 (1982/83), no. 3, 319–340. (1982) DOI10.1007/BF01391795
- Matsuoka, T., 10.1016/0022-0396(88)90069-1, J. Differential Equations 76 (1988), no. 1, 190–201. (1988) DOI10.1016/0022-0396(88)90069-1
- Pogromsky, A.Yu., Matveev, A.S., 10.1088/0951-7715/24/7/002, Nonlinearity 24 (2011), no. 7, 1937–1959. (2011) MR2805587DOI10.1088/0951-7715/24/7/002
- Shiraiwa, K., 10.1017/S0027763000022571, Nagoya Math. J. 67 (1977), 121–138. (1977) DOI10.1017/S0027763000022571
- Tien, L., Nhien, L., 10.4236/jamp.2019.72032, Journal of Applied Mathematics and Physics 07 (2019), 418–429. (2019) DOI10.4236/jamp.2019.72032
- Vetokhin, A.N., Topological entropy of a diagonalizable linear system of differential equations., Int. Workshop QUALITDE-2020 (December 19-21, 2020) (Tbilisi, Georgia), 2021. (2021)
- Walters, P., An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. (1982)
- Wang, Z., Ma, J., Chen, Z., Zhang, Q., A new chaotic system with positive topological entropy, Entropy 17 (2015), no. 8, 5561–5579. (2015) MR3393999
- Wójcik, K., 10.1515/ans-2016-6021, Adv. Nonlinear Stud. 17 (2017), no. 3, 527–550. (2017) MR3667058DOI10.1515/ans-2016-6021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.