An unconditionally stable finite element scheme for anisotropic curve shortening flow
Klaus Deckelnick; Robert Nürnberg
Archivum Mathematicum (2023)
- Volume: 059, Issue: 3, page 263-274
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topDeckelnick, Klaus, and Nürnberg, Robert. "An unconditionally stable finite element scheme for anisotropic curve shortening flow." Archivum Mathematicum 059.3 (2023): 263-274. <http://eudml.org/doc/298988>.
@article{Deckelnick2023,
abstract = {Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.},
author = {Deckelnick, Klaus, Nürnberg, Robert},
journal = {Archivum Mathematicum},
keywords = {anisotropic curve shortening flow; finite element method; stability},
language = {eng},
number = {3},
pages = {263-274},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {An unconditionally stable finite element scheme for anisotropic curve shortening flow},
url = {http://eudml.org/doc/298988},
volume = {059},
year = {2023},
}
TY - JOUR
AU - Deckelnick, Klaus
AU - Nürnberg, Robert
TI - An unconditionally stable finite element scheme for anisotropic curve shortening flow
JO - Archivum Mathematicum
PY - 2023
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 059
IS - 3
SP - 263
EP - 274
AB - Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.
LA - eng
KW - anisotropic curve shortening flow; finite element method; stability
UR - http://eudml.org/doc/298988
ER -
References
top- Alfaro, M., Garcke, H., Hilhorst, D., Matano, H., Schätzle, R., Motion by anisotropic mean curvature as sharp interface limit of an inhomogeneous and anisotropic Allen-Cahn equation, Proc. Roy. Soc. Edinburgh Sect. A 140 (4) (2010), 673–706. (2010) MR2672065
- Barrett, J.W., Blowey, J.F., 10.1007/s002110050276, Numer. Math. 77 (1) (1997), 1–34. (1997) DOI10.1007/s002110050276
- Barrett, J.W., Garcke, H., Nürnberg, R., 10.1093/imanum/drm013, IMA J. Numer. Anal. 28 (2) (2008), 292–330. (2008) MR2401200DOI10.1093/imanum/drm013
- Barrett, J.W., Garcke, H., Nürnberg, R., 10.1093/imanum/drp005, IMA J. Numer. Anal. 30 (1) (2010), 4–60. (2010) MR2580546DOI10.1093/imanum/drp005
- Barrett, J.W., Garcke, H., Nürnberg, R., 10.1002/num.20637, Numer. Methods Partial Differential Equations 27 (1) (2011), 1–30. (2011) MR2743598DOI10.1002/num.20637
- Barrett, J.W., Garcke, H., Nürnberg, R., 10.1093/imanum/drt044, IMA J. Numer. Anal. 34 (4) (2014), 1289–1327. (2014) MR3269427DOI10.1093/imanum/drt044
- Barrett, J.W., Garcke, H., Nürnberg, R., 10.1093/imanum/drz012, IMA J. Numer. Anal. 40 (3) (2020), 1601–1651. (2020) MR4122486DOI10.1093/imanum/drz012
- Barrett, J.W., Garcke, H., Nürnberg, R., Parametric finite element approximations of curvature driven interface evolutions, Handb. Numer. Anal. (Bonito, A., Nochetto, R.H., eds.), vol. 21, Elsevier, Amsterdam, 2020, pp. 275–423. (2020) MR4378429
- Bellettini, G., Anisotropic and crystalline mean curvature flow, A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., vol. 50, Cambridge Univ. Press, 2004, pp. 49–82. (2004) MR2132657
- Bellettini, G., Paolini, M., 10.14492/hokmj/1351516749, Hokkaido Math. J. 25 (3) (1996), 537–566. (1996) Zbl0873.53011DOI10.14492/hokmj/1351516749
- Beneš, M., Mikula, K., Simulation of anisotropic motion by mean curvature-comparison of phase field and sharp interface approaches, Acta Math. Univ. Comenian. (N.S.) 67 (1) (1998), 17–42. (1998)
- Caselles, V., Kimmel, R., Sapiro, G., 10.1023/A:1007979827043, Int. J. Comput. Vis. 22 (1) (1997), 61–79. (1997) DOI10.1023/A:1007979827043
- Clarenz, U., Dziuk, G., Rumpf, M., On generalized mean curvature flow in surface processing, Geometric Analysis and Nonlinear Partial Differential Equations, Springer-Verlag, Berlin, 2003, pp. 217–248. (2003) MR2008341
- Deckelnick, K., Dziuk, G., On the approximation of the curve shortening flow, Calculus of Variations, Applications and Computations (Pont-à-Mousson, 1994) (Bandle, C., Bemelmans, J., Chipot, M., Paulin, J.S.J., Shafrir, I., eds.), Pitman Res. Notes Math. Ser., Longman Sci. Tech., Harlow, 1995, pp. 100–108. (1995)
- Deckelnick, K., Dziuk, G., Elliott, C.M., 10.1017/S0962492904000224, Acta Numer. 14 (2005), 139–232. (2005) Zbl1113.65097MR2168343DOI10.1017/S0962492904000224
- Deckelnick, K., Nürnberg, R., A novel finite element approximation of anisotropic curve shortening flow, arXiv:2110.04605 (2021).
- Deimling, K., Nonlinear functional analysis, Springer-Verlag, Berlin, 1985. (1985)
- Dziuk, G., 10.1142/S0218202594000339, Math. Models Methods Appl. Sci. 4 (4) (1994), 589–606. (1994) DOI10.1142/S0218202594000339
- Dziuk, G., 10.1137/S0036142998337533, SIAM J. Numer. Anal. 36 (6) (1999), 1808–1830. (1999) Zbl0942.65112DOI10.1137/S0036142998337533
- Ecker, K., Regularity Theory for Mean Curvature Flow, Birkhäuser, Boston, 2004. (2004) Zbl1058.53054MR2024995
- Elliott, C.M., Fritz, H., On approximations of the curve shortening flow and of the mean curvature flow based on the DeTurck trick, IMA J. Numer. Anal. 37 (2) (2017), 543–603. (2017) MR3649420
- Elliott, C.M., Stuart, A.M., 10.1137/0730084, SIAM J. Numer. Anal. 30 (6) (1993), 1622–1663. (1993) DOI10.1137/0730084
- Garcke, H., Lam, K.F., Nürnberg, R., Signori, A., Overhang penalization in additive manufacturing via phase field structural topology optimization with anisotropic energies, arXiv:2111.14070 (2021).
- Giga, Y., Surface evolution equations, vol. 99, Birkhäuser, Basel, 2006. (2006) MR2238463
- Gurtin, M.E., Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1993. (1993) Zbl0787.73004
- Haußer, F., Voigt, A., 10.1016/j.aml.2005.05.011, Appl. Math. Lett. 19 (8) (2006), 691–698. (2006) MR2232241DOI10.1016/j.aml.2005.05.011
- Mantegazza, C., Lecture notes on mean curvature flow, Progress in Mathematics, vol. 290, Birkhäuser/Springer Basel AG, Basel, 2011. (2011) MR2815949
- Mikula, K., Ševčovič, D., 10.1137/S0036139999359288, SIAM J. Appl. Math. 61 (5) (2001), 1473–1501. (2001) MR1824511DOI10.1137/S0036139999359288
- Mikula, K., Ševčovič, D., 10.1002/mma.514, Math. Methods Appl. Sci. 27 (13) (2004), 1545–1565. (2004) MR2077443DOI10.1002/mma.514
- Mikula, K., Ševčovič, D., 10.1007/s00791-004-0131-6, Computing Vis. Sci. 6 (4) (2004), 21–225. (2004) MR2071441DOI10.1007/s00791-004-0131-6
- Pozzi, P., 10.1002/mma.836, Math. Methods Appl. Sci. 30 (11) (2007), 1243–1281. (2007) MR2334978DOI10.1002/mma.836
- Taylor, J.E., Cahn, J.W., Handwerker, C.A., 10.1016/0956-7151(92)90090-2, Acta Metall. Mater. 40 (7) (1992), 1443–1474. (1992) DOI10.1016/0956-7151(92)90090-2
- Wu, C., Tai, X., 10.1109/TVCG.2009.103, IEEE Trans. Vis. Comput. Graph. 16 (4) (2010), 647–662. (2010) DOI10.1109/TVCG.2009.103
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.