Page 1

Displaying 1 – 14 of 14

Showing per page

A minimum principle in the dynamics of elastic materials with voids

Michele Ciarletta, Edoardo Scarpetta (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the context of the linear, dynamic problem for elastic bodies with voids, a minimum principle in terms of mechanical energy is stated. Involving a suitable (Reiss type) function in the minimizing functional, the minimum character achieved in the Laplace-transform domain is preserved when going back to the original time domain. Initial-boundary conditions of quite general type are considered.

Il problema monolaterale di contatto dinamico con attrito di una trave su una fondazione alla Hetényi: un approccio agli elementi finiti

Luigi Ascione, Giancarlo Bilotti (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

L'ipotesi di contatto monolaterale tra strutture di fondazione e terreno assume un significato importante in tutti quei problemi tecnici, nei quali l'area di contatto tra struttura e fondazione diviene percentualmente piccola, sia per la rigidezza relativa dei corpi a contatto, sia per la condizione di carico, soprattutto in presenza di carichi ribaltanti come possono adesempio essere le forze sismiche. In questo contesto sono stati sviluppati negli ultimi anni diversi studi, che riguadano però...

Implicit constitutive solution scheme for Mohr-Coulomb plasticity

Sysala, Stanislav, Čermák, Martin (2017)

Programs and Algorithms of Numerical Mathematics

This contribution summarizes an implicit constitutive solution scheme of the elastoplastic problem containing the Mohr-Coulomb yield criterion, a nonassociative flow rule, and a nonlinear isotropic hardening. The presented scheme builds upon the subdifferential formulation of the flow rule leading to several improvements. Mainly, it is possible to detect a position of the unknown stress tensor on the Mohr-Coulomb pyramid without blind guesswork. Further, a simplified construction of the consistent...

Mathematical modelling of rock bolt reinforcement

Runt, David, Novotný, Jaroslav, Pruška, Jan (2017)

Programs and Algorithms of Numerical Mathematics

Rock bolts as construction elements are often used in underground civil engineering projects. This work deals with their numerical modelling. Aydan special finite elements for the description of rock bolts and hexahedral quadratic finite elements for the description of rock massif were used. A code for the computation of stiffness matrices and right hand sides of these elements was developed. The code was tested on several simple test examples and their results were compared with the analytical...

Mathematical modelling of rock bolt systems. I

Josef Malík (1998)

Applications of Mathematics

The main goal of the paper is to give a variational formulation of the behaviour of bolt systems in rock mass. The problem arises in geomechanics where bolt systems are applied to reinforce underground openings by inserting steel bars or cables. After giving a variational formulation, we prove the existence and uniqueness and some other properties.

Modelled behaviour of granular material during loading and unloading

Krejčí, Pavel, Siváková, Lenka, Chleboun, Jan (2019)

Programs and Algorithms of Numerical Mathematics

The main aim of this paper is to analyze numerically the model behaviour of a granular material during loading and unloading. The model was originally proposed by D. Kolymbas and afterward modified by E. Bauer. For our purposes the constitutive equation was transformed into a rate independent form by introducing a dimensionless time parameter. By this transformation we were able to derive explicit formulas for the strain-stress trajectories during loading-unloading cycles and compare the results...

Stress-controlled hysteresis and long-time dynamics of implicit differential equations arising in hypoplasticity

Victor A. Kovtunenko, Ján Eliaš, Pavel Krejčí, Giselle A. Monteiro, Judita Runcziková (2023)

Archivum Mathematicum

A long-time dynamic for granular materials arising in the hypoplastic theory of Kolymbas type is investigated. It is assumed that the granular hardness allows exponential degradation, which leads to the densification of material states. The governing system for a rate-independent strain under stress control is described by implicit differential equations. Its analytical solution for arbitrary inhomogeneous coefficients is constructed in closed form. Under cyclic loading by periodic pressure, finite...

The role of deviatone and volumetrie non-associativities on strain localization

Ahmed Benallal, Claudia Comi (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A homogeneous solid subject to quasi-static loading in the small strain range is considered. The material model assumed is rate-independent, non-associative and incrementally bilinear. The strain localization conditions are analytically solved using a geometric method. The expressions of the critical hardening moduli, their domains of validity and the form of the strain rate discontinuity are obtained. Finally these results, and in particular the role of hydrostatic and deviatoric non-normality,...

Currently displaying 1 – 14 of 14

Page 1