The common division topology on

José del Carmen Alberto-Domínguez; Gerardo Acosta; Maira Madriz-Mendoza

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 3, page 329-349
  • ISSN: 0010-2628

Abstract

top
A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider a topology τ S on the set of natural numbers. We then present properties of the topological space ( , τ S ) , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by P. Szyszkowska and M. Szyszkowski in 2018.

How to cite

top

Alberto-Domínguez, José del Carmen, Acosta, Gerardo, and Madriz-Mendoza, Maira. "The common division topology on $\mathbb {N}$." Commentationes Mathematicae Universitatis Carolinae 62 63.3 (2022): 329-349. <http://eudml.org/doc/299032>.

@article{Alberto2022,
abstract = {A topological space $X$ is totally Brown if for each $n \in \mathbb \{N\} \setminus \lbrace 1\rbrace $ and every nonempty open subsets $U_1,U_2,\ldots ,U_n$ of $X$ we have $\{\rm cl\}_X(U_1) \cap \{\rm cl\}_X(U_2) \cap \cdots \cap \{\rm cl\}_X(U_n) \ne \emptyset $. Totally Brown spaces are connected. In this paper we consider a topology $\tau _S$ on the set $\mathbb \{N\}$ of natural numbers. We then present properties of the topological space $(\mathbb \{N\},\tau _S)$, some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by P. Szyszkowska and M. Szyszkowski in 2018.},
author = {Alberto-Domínguez, José del Carmen, Acosta, Gerardo, Madriz-Mendoza, Maira},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {arithmetic progression; common division topology; totally Brown space; totally separated space},
language = {eng},
number = {3},
pages = {329-349},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The common division topology on $\mathbb \{N\}$},
url = {http://eudml.org/doc/299032},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Alberto-Domínguez, José del Carmen
AU - Acosta, Gerardo
AU - Madriz-Mendoza, Maira
TI - The common division topology on $\mathbb {N}$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 3
SP - 329
EP - 349
AB - A topological space $X$ is totally Brown if for each $n \in \mathbb {N} \setminus \lbrace 1\rbrace $ and every nonempty open subsets $U_1,U_2,\ldots ,U_n$ of $X$ we have ${\rm cl}_X(U_1) \cap {\rm cl}_X(U_2) \cap \cdots \cap {\rm cl}_X(U_n) \ne \emptyset $. Totally Brown spaces are connected. In this paper we consider a topology $\tau _S$ on the set $\mathbb {N}$ of natural numbers. We then present properties of the topological space $(\mathbb {N},\tau _S)$, some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by P. Szyszkowska and M. Szyszkowski in 2018.
LA - eng
KW - arithmetic progression; common division topology; totally Brown space; totally separated space
UR - http://eudml.org/doc/299032
ER -

References

top
  1. Alberto-Domínguez J. C., Acosta G., Delgadillo-Piñón G., Totally Brown subsets of the Golomb space and the Kirch space, Comment. Math. Univ. Carolin. 63 (2022), no. 2, 189–219. MR4506132
  2. Apostol T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York, 1976. MR0434929
  3. Aull C. E., Thron W. J., 10.1016/S1385-7258(62)50003-6, Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24 (1962), 26–37. MR0138082DOI10.1016/S1385-7258(62)50003-6
  4. Dontchev J., On superconnected spaces, Serdica 20 (1994), no. 3–4, 345–350. MR1333356
  5. Dunham W., T 1 / 2 -spaces, Kyungpook Math. J. 17 (1977), no. 2, 161–169. MR0470934
  6. Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  7. Fine B., Rosenberger G., Number Theory. An Introduction via the Density of Primes, Birkhäuser/Springer, Cham, 2016. MR3559913
  8. Golomb S. W., 10.1080/00029890.1959.11989385, Amer. Math. Monthly 66 (1959), 663–665. MR0107622DOI10.1080/00029890.1959.11989385
  9. Golomb S. W., Arithmetica topologica, General Topology and Its Relations to Modern Analysis and Algebra, Proc. Sympos., Praha, 1961, Academic Press, New York, Publ. House Czech. Acad. Sci., Praha, 1962, pages 179–186 (Italian). MR0154249
  10. Jha M. N., Separation axioms between T 0 and T 1 , Progr. Math. (Allahabad) 11 (1977), no. 1–2, 1–4. MR0458365
  11. Kirch A. M., 10.1080/00029890.1969.12000163, Amer. Math. Monthly 76 (1969), 169–171. MR0239563DOI10.1080/00029890.1969.12000163
  12. Levine N., 10.1007/BF02843888, Rend. Circ. Mat. Palermo (2) 19 (1970), 89–96. MR0305341DOI10.1007/BF02843888
  13. Nanda S., Panda H. K., The fundamental group of principal superconnected spaces, Rend. Mat. (6) 9 (1976), no. 4, 657–664. MR0434295
  14. Steen L. A., Seebach J. A., Jr., Counterexamples in Topology, Dover Publications, Mineola, New York, 1995. Zbl0386.54001MR1382863
  15. Szczuka P., Connections between connected topological spaces on the set of positive integers, Cent. Eur. J. Math. 11 (2013), no. 5, 876–881. MR3032336
  16. Szczuka P., The closures of arithmetic progressions in the common division topology on the set of positive integers, Cent. Eur. J. Math. 12 (2014), no. 7, 1008–1014. MR3188461
  17. Szczuka P., 10.1142/S1793042116500500, Int. J. Number Theory 12 (2016), no. 3, 775–785. MR3477420DOI10.1142/S1793042116500500
  18. Szyszkowska P., Szyszkowski M., Properties of the common division topology on the set of positive integers, J. Ramanujan Math. Soc. 33 (2018), no. 1, 91–98. MR3772612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.